Friday, August 8, 2025
No menu items!
HomeNatureIn situ light-field imaging of octopus locomotion reveals simplified control

In situ light-field imaging of octopus locomotion reveals simplified control

  • Helms, M., Vattam, S. S. & Goel, A. K. Biologically inspired design: process and products. Des. Stud. 30, 606–622 (2009).


    Google Scholar
     

  • Fu, K., Moreno, D., Yang, M. & Wood, K. L. Bio-inspired design: an overview investigating open questions from the broader field of design-by-analogy. J. Mech. Des. 136, 111102 (2014).


    Google Scholar
     

  • Kim, S., Laschi, C. & Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Laschi, C. Octobot – a robot octopus points the way to soft robotics. IEEE Spectrum 54, 38–43 (2017).


    Google Scholar
     

  • Wu, Q. et al. A novel underwater bipedal walking soft robot bio-inspired by the coconut octopus. Bioinspir. Biomim. 16, 046007 (2021).

    CAS 

    Google Scholar
     

  • Haddock, S. H. D. et al. Insights into the biodiversity, behavior, and bioluminescence of deep-sea organisms using molecular and maritime technology. Oceanography 30, 38–47 (2017).


    Google Scholar
     

  • Bagge, L. E., Osborn, K. J. & Johnsen, S. Nanostructures and monolayers of spheres reduce surface reflections in hyperiid amphipods. Curr. Biol. 26, 3071–3076 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Fish, F. E., Weber, P. W., Murray, M. M. & Howle, L. E. The tubercles on humpback whales’ flippers: application of bio-inspired technology. Integr. Comp. Biol. 51, 203–213 (2011).

    PubMed 

    Google Scholar
     

  • Ko, H., Lauder, G. & Nagpal, R. The role of hydrodynamics in collective motions of fish schools and bioinspired underwater robots. J. R. Soc. Interface 20, 20230357 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy, E. B. L., Buresch, K. C., Boinapally, P. & Hanlon, R. T. Octopus arms exhibit exceptional flexibility. Sci. Rep. 10, 20872 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Giesen, L., Kilian, P. B., Allard, C. A. H. & Bellono, N. W. Molecular basis of chemotactile sensation in octopus. Cell 183, 594–604 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grasso, F. W. Octopus sucker-arm coordination in grasping and manipulation. Am. Malacol. Bull. 24, 13–23 (2008).


    Google Scholar
     

  • Norman, M. D., Finn, J. & Tregenza, T. Dynamic mimicry in an Indo–Malayan octopus. Proc. R. Soc. Lond. B. 268, 1755–1758 (2001).

    CAS 

    Google Scholar
     

  • Huffard, C. L., Boneka, F. & Full, R. J. Underwater bipedal locomotion by octopuses in disguise. Science 307, 1927 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Hochner, B. An embodied view of octopus neurobiology. Curr. Biol. 22, R887–R892 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Zullo, L., Eichenstein, H., Maiole, F. & Hochner, B. Motor control pathways in the nervous system of Octopus vulgaris arm. J. Comp. Physiol. 205, 271–279 (2019).


    Google Scholar
     

  • Kuuspalu, A., Cody, S. & Hale, M. E. Multiple nerve cords connect the arms of octopuses, providing alternative paths for inter-arm signaling. Curr. Biol. 32, 5415–5421 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Gutnick, T., Zullo, L., Hochner, B. & Kuba, M. J. Use of peripheral sensory information for central nervous control of arm movement by Octopus vulgaris. Curr. Biol. 30, 4322–4327 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Tekinalp, A. et al. Topology, dynamics, and control of a muscle-architected soft arm. Proc. Natl Acad. Sci. USA 121, e2318769121 (2024).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sumbre, G., Gutfreund, Y., Fiorito, G., Flash, T. & Hochner, B. Control of octopus arm extension by a peripheral motor program. Science 293, 1845–1848 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sumbre, G., Fiorito, G., Flash, T. & Hochner, B. Octopuses use a human-like strategy to control precise point-to-point arm movements. Curr. Biol. 16, 767–772 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Levy, G., Flash, T. & Hochner, B. Arm coordination in octopus crawling involves unique motor control strategies. Curr. Biol. 25, 1195–1200 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Ijspeert, A. J. Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008).

    PubMed 

    Google Scholar
     

  • Amodio, P., Josef, N., Shashar, N. & Fiorito, G. Bipedal locomotion in Octopus vulgaris: a complementary observation and some preliminary considerations. Ecol. Evol. 11, 3679–3684 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alupay, J., Mather, J. & Iskarous, K. A syntactic analysis of a complex motor action: the octopus arm ‘slap’. Mar. Biol. 170, 99 (2023).


    Google Scholar
     

  • Chung, W.-S., Kurniawan, N. D. & Marshall, N. J. Comparative brain structure and visual processing in octopus from different habitats. Curr. Biol. 32, 97–110 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Kuba, M. J., Byrne, R. A., Meisel, D. V. & Mather, J. A. Exploration and habituation in intact free moving Octopus vulgaris. Int. J. Comp. Psychol. 19, 426–438 (2006).


    Google Scholar
     

  • Fiorito, G. et al. Guidelines for the care and welfare of cephalopods in research – a consensus based on an initiative by CephRes, FELASA and the Boyd group. Lab. Anim. 49, 1–90 (2015).

    PubMed 

    Google Scholar
     

  • Durden, J. M. et al. Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding. Oceanogr. Mar. Biol. Ann. Rev. 54, 1–72 (2016).


    Google Scholar
     

  • Irschick, D. J. et al. 3D visualization processes for recreating and studying organismal form. iScience 25, 104867 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katija, K. & Dabiri, J. O. In situ field measurements of aquatic animal-fluid interactions using a self-contained underwater velocimetry apparatus (scuva). Limnol. Oceanogr. Methods 6, 162–171 (2008).


    Google Scholar
     

  • Katija, K. et al. Revealing enigmatic mucus structures in the deep sea using DeepPIV. Nature 583, 78–82 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy, D., Webster, D. & Yen, J. A high-speed tomographic PIV system for measuring zooplanktonic flow. Limnol. Oceanogr. Methods 10, 1096–1112 (2012).


    Google Scholar
     

  • Nayak, A. R., Malkiel, E., McFarland, M. N., Twardowski, M. S. & Sullivan, J. M. A review of holography in the aquatic sciences: in situ characterization of particles, plankton, and small scale biophysical interactions. Front. Mar. Sci. 7, 572147 (2021).


    Google Scholar
     

  • Barry, J. P. et al. Abyssal hydrothermal springs-cryptic incubators for brooding octopus. Sci. Adv. 9, eadg3247 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voight, J. R. Observations of deep-sea octopodid behavior from undersea vehicles. Am. Malacol. Bull. 24, 43–50 (2008).


    Google Scholar
     

  • Huffard, C. L. Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defenses. J. Exp. Biol. 209, 3697–3707 (2006).

    PubMed 

    Google Scholar
     

  • O’Brien, S. L. & O’Brien, C. E. First record of bipedal locomotion in Callistoctopus furvus. J. Molluscan Stud. 88, Eyac020 (2022).


    Google Scholar
     

  • Zullo, L., Di Clemente, A. & Maiole, F. How octopus arm muscle contractile properties and anatomical organization contribute to arm functional specialization. J. Exp. Biol. 225, jeb243163 (2022).

    PubMed 

    Google Scholar
     

  • Nishii, J. & Ikeda, M. Gait analysis of crawling locomotion of Octopus sinensis. In 9th International Symposium on Adaptive Motion of Animals and Machines (AMAM 2019) (ed. Ijspeert, A. J.) 1–2 (EPFL, 2019).

  • Hanassy, S., Botvinnik, A., Flash, T. & Hochner, B. Stereotypical reaching movements of the octopus involve both bend propagation and arm elongation. Bioinspir. Biomim. 10, 035001 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lankow, A. J. & Mehta, R. S. Prey-dependent feeding behavior in a kelp-forest mesopredator, the California two-spot octopus. J. Exp. Mar. Biol. Ecol. 567, 151932 (2023).


    Google Scholar
     

  • Calisti, M., Picardi, G. & Laschi, C. Fundamentals of soft robot locomotion. J. R. Soc. Interface 14, 20170101 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robison, B., Seibel, B. & Drazen, J. Deep-sea octopus (Graneledone boreopacifica) conducts the longest-known egg-brooding period of any animal. PLoS ONE 9, e103437 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voight, J. R., Kurth, J. A., Strauss, R. E., Strugnell, J. M. & Allcock, L. A. A depth cline in deep-sea octopods (Cephalopoda: Graneledone) in the northeast Pacific Ocean. Bull. Mar. Sci. 96, 323–340 (2020).


    Google Scholar
     

  • Voight, J. R. Sexual dimorphism and niche divergence in a mid-water octopod (Cephalopoda: Bolitaenidae). Biol. Bull. 189, 113–119 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Burns, J. A. et al. An in situ digital synthesis strategy for the discovery and description of ocean life. Sci. Adv. 10, eadj4960 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B. & Pan, B. Full-field surface 3D shape and displacement measurements using an unfocused plenoptic camera. Exp. Mech. 58, 831–845 (2018).

    CAS 

    Google Scholar
     

  • Fahringer, T. W., Lynch, K. P. & Thurow, B. S. Volumetric particle image velocimetry with a single plenoptic camera. Meas. Sci. Technol. 26, 115201 (2015).

    ADS 

    Google Scholar
     

  • Manning, L. et al. NSF Convergence Accelerator Workshop on Bioinspired Design. Workshop Report (National Science Foundation, 2023).

  • Nagel, J. K., Schmidt, L. & Born, W. Establishing analogy categories for bio-inspired design. Designs 2, 47 (2018).


    Google Scholar
     

  • Lippmann, M. G. La photographie integrale. C. R. Acad. Sci. 146, 446–451 (1908).


    Google Scholar
     

  • Lippmann, M. G. Integral photography. Sci. Am. 105, 164 (1911).


    Google Scholar
     

  • Levoy, M. Light fields and computational imaging. Computer 39, 46–55 (2006).


    Google Scholar
     

  • Ng, R. et al. Light field photography with a hand-held plenoptic camera. Stanford Technical Report CTSR 2005-02 (Stanford Univ., 2005).

  • Perwaß, C. & Wietzke, L. Single lens 3D-camera with extended depth-of-field. In Human Vision and Electronic Imaging XVII (eds. Rogowitz, B. E. et al.) 829108 (Society of Photo-Optical Instrumentation Engineers (SPIE), 2012).

  • Heinze, C., Spyropoulos, S., Hussmann, S. & Perwass, C. Automated robust metric calibration algorithm for multifocus plenoptic cameras. IEEE Trans. Instrum. Meas. 65, 1197–1205 (2016).

    ADS 

    Google Scholar
     

  • Roberts, P. L. D. EyeRIS camera control. GitHub https://github.com/bioinspirlab/eyeris-camera-control (2024).

  • Roberts, P. L. D. EyeRIS zoom drive. GitHib https://github.com/bioinspirlab/eyeris-zoom-drive (2024).

  • Robson, G. C. Monograph of the recent Cephalopoda, Part 1: Octopodinae (British Museum, 1929).

  • Byrne, R. A., Kuba, M. & Griebel, U. Lateral asymmetry of eye use in Octopus vulgaris Anim. Behav. 64, 461–468 (2002).


    Google Scholar
     

  • Hedrick, T. L. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir. Biomim. 3, 034001 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • Katija, K., Roberts, P. & Daniels, J. Muusoctopus robustus crawling data from Davidson Seamount, 2022-08-26. Zenodo https://doi.org/10.5281/zenodo.10795493 (2024).

  • Daniels, J. Octopus 3D tracking. GitHub https://github.com/bioinspirlab/octopus-3d-tracking (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments