Friday, June 27, 2025
No menu items!
HomeNatureIn-line NMR guided orthogonal transformation of real-life plastics

In-line NMR guided orthogonal transformation of real-life plastics

  • MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jehanno, C. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Plastics—the fast facts 2023. Plastics Europe https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (2023).

  • Martín, A. J., Mondelli, C., Jaydev, S. D. & Pérez-Ramírez, J. Catalytic processing of plastic waste on the rise. Chem 7, 1487–1533 (2021).

    Article 

    Google Scholar
     

  • Peplow, M. Can this revolutionary plastics-recycling plant help solve the pollution crisis? Nature 638, 22–25 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lubongo, C., Bin Daej, M. A. A. & Alexandridis, P. Recent developments in technology for sorting plastic for recycling: the emergence of artificial intelligence and the rise of the robots. Recycling 9, 59 (2024).

    Article 

    Google Scholar
     

  • Cao, R. et al. Co-upcycling of polyvinyl chloride and polyesters. Nat. Sustain. 6, 1685–1692 (2023).

    Article 

    Google Scholar
     

  • Kots, P. A., Vance, B. C., Quinn, C. M., Wang, C. & Vlachos, D. G. A two-stage strategy for upcycling chlorine-contaminated plastic waste. Nat. Sustain. 6, 1258–1267 (2023).

    Article 

    Google Scholar
     

  • Westhues, S., Idel, J. & Klankermayer, J. Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts. Sci. Adv. 4, eaat9669 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jehanno, C. et al. Selective chemical upcycling of mixed plastics guided by a thermally stable organocatalyst. Angew. Chem. Int. Ed. 60, 6710–6717 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, R., Xu, G., Dong, B., Guo, X. & Wang, Q. Selective, sequential, and “one-pot” depolymerization strategies for chemical recycling of commercial plastics and mixed plastics. ACS Sustain. Chem. Eng. 10, 9860–9871 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Arifuzzaman, M. et al. Selective deconstruction of mixed plastics by a tailored organocatalyst. Mater. Horiz. 10, 3360–3368 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jing, Y. et al. Towards the circular economy: converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angew. Chem. Int. Ed. 133, 5587–5595 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wei, J. et al. Hydrodeoxygenation of oxygen‐containing aromatic plastic wastes to liquid organic hydrogen carriers. Angew. Chem. Int. Ed. 62, e202310505 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gartzen Lopez, et al. Recent advances in the gasification of waste plastics. A critical overview. Renew. Sustain. Energy Rev. 82, 576–596 (2018).

    Article 

    Google Scholar
     

  • Onur Dogu, et al. The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: state-of-the-art, challenges, and future directions. Prog. Energy Combust. Sci. 84, 100901 (2021).

    Article 

    Google Scholar
     

  • Wang, M. et al. Complete hydrogenolysis of mixed plastic wastes. Nat. Chem. Eng. 1, 376–384 (2024).

    Article 

    Google Scholar
     

  • Lohr, T. L. & Marks, T. J. Orthogonal tandem catalysis. Nat. Chem. 7, 477–482 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pretsch, E., Bühlmann, P. & Badertscher, M. Structure Determination of Organic Compounds (Springer, 2020).

  • Weng, Y., Hong, C.-B., Zhang, Y. & Liu, H. Catalytic depolymerization of polyester plastics toward closed-loop recycling and upcycling. Green Chem. 26, 571–592 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yeung, C. W. S., Teo, J. Y. Q., Loh, X. J. & Lim, J. Y. C. Polyolefins and polystyrene as chemical resources for a sustainable future: challenges, advances, and prospects. ACS Mater. Lett. 3, 1660–1676 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, S. et al. Upcycling chlorinated waste plastics. Nat. Rev. Methods Primers 3, 44 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cao, R. et al. Catalytic oxidation of polystyrene to aromatic oxygenates over a graphitic carbon nitride catalyst. Nat. Commun. 13, 4809 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, S. et al. Catalytic amination of polylactic acid to alanine. J. Am. Chem. Soc. 143, 16358–16363 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, S. et al. Heterogeneous catalytic dehydrogenative coupling of ethylene glycol and primary alcohols into α-hydroxycarboxylic acids. Sci. China Chem. 66, 2583–2589 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gan, L. et al. Beyond conventional degradation: catalytic solutions for polyolefin upcycling. CCS Chem. 6, 313–333 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Walker, T. W. et al. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci. Adv. 6, eaba7599 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller-Chou, B. A. & Koenig, J. L. A review of polymer dissolution. Prog. Polym. Sci. 28, 1223–1270 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S., Kots, P. A., Vance, B. C., Danielson, A. & Vlachos, D. G. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 7, eabf8283 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X. et al. Polyethylene upgrading to liquid fuels boosted by atomic Ce promoters. Angew. Chem. Int. Ed. 63, e202317594 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Tennakoon, A. et al. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat. Catal. 3, 893–901 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jaydev, S. D., Martín, A. J. & Pérez-Ramírez, J. Direct conversion of polypropylene into liquid hydrocarbons on carbon-supported platinum catalysts. ChemSusChem 14, 5179–5185 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Disordered, sub-nanometer Ru structures on CeO2 are highly efficient and selective catalysts in polymer upcycling by hydrogenolysis. ACS Catal. 12, 4618–4627 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kots, P. A. et al. Electronic modulation of metal-support interactions improves polypropylene hydrogenolysis over ruthenium catalysts. Nat. Commun. 13, 5186 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura, M. et al. Structure–activity relationship in hydrogenolysis of polyolefins over Ru/support catalysts. Appl. Catal. B 318, 121870 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, X. et al. Size-controlled nanoparticles embedded in a mesoporous architecture leading to efficient and selective hydrogenolysis of polyolefins. J. Am. Chem. Soc. 144, 5323–5334 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, M. et al. Efficient upgrading of polyolefin plastics into C5–C12 gasoline alkanes over a Pt/W/Beta catalyst. Sustain. Energy Fuels 6, 271–275 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Engels, H. W. et al. Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 52, 9422–9441 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. S. et al. Visible light-triggered depolymerization of commercial polymethacrylates. Science 387, 874–880 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conk, R. J. et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 377, 1561–1566 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. Hydroformylation of pyrolysis oils to aldehydes and alcohols from polyolefin waste. Science 381, 660–666 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Z. et al. Chemical upcycling of polyethylene, polypropylene, and mixtures to high-value surfactants. Science 381, 666–671 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation. Science 379, 807–811 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Conk, R. J. et al. Polyolefin waste to light olefins with ethylene and base-metal heterogeneous catalysts. Science 385, 1322–1327 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, H. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fagnani, D. E., Kim, D., Camarero, S. I., Alfaro, J. F. & McNeil, A. J. Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination. Nat. Chem. 15, 222–229 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morado, E. G. et al. End-of-life upcycling of polyurethanes using a room temperature, mechanism-based degradation. Nat. Chem. 15, 569–577 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, M. et al. Layered double hydroxide derivatives for polyolefin upcycling. J. Am. Chem. Soc. 146, 10655–10665 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments