Sunday, November 24, 2024
No menu items!
HomeNatureImmune responses in checkpoint myocarditis across heart, blood and tumour

Immune responses in checkpoint myocarditis across heart, blood and tumour

  • Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Network Open 2, e192535 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mahmood, S. S. et al. Myocarditis in patients treated with immune checkpoint inhibitors. J. Am. Coll. Cardiol. 71, 1755–1764 (2018).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Herrmann, J. et al. Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement. Eur. Heart J. 43, 280–299 (2022).

    Article 

    Google Scholar
     

  • Bonaca, M. P. et al. Myocarditis in the setting of cancer therapeutics: proposed case definitions for emerging clinical syndromes in cardio-oncology. Circulation 140, 80–91 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Cardiotoxicity of immune checkpoint inhibitors. Curr. Treat. Options Cardiovasc. Med. 21, 32 (2019).

    Article 

    Google Scholar
     

  • Salem, J.-E. et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. https://doi.org/10.1016/s1470-2045(18)30608-9 (2018).

  • Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • Champion, S. N. & Stone, J. R. Immune checkpoint inhibitor associated myocarditis occurs in both high-grade and low-grade forms. Mod. Pathol. 33, 99–108 (2019). 2019 33:1.

    Article 

    Google Scholar
     

  • Ma, P. et al. Expansion of pathogenic cardiac macrophages in immune checkpoint inhibitor myocarditis. Circulation 149, 48–66 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Siddiqui, B. A. et al. Molecular pathways and cellular subsets associated with adverse clinical outcomes in overlapping immune-related myocarditis and myositis. Cancer Immunol. Res. 12, 964–987 (2024).

    Article 

    Google Scholar
     

  • Finke, D. et al. Comparative transcriptomics of immune checkpoint inhibitor myocarditis identifies guanylate binding protein 5 and 6 dysregulation. Cancers 13, 2498 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Zhu, H. et al. Identification of pathogenic immune cell subsets associated with checkpoint inhibitor-induced myocarditis. Circulation 146, 316–335 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Axelrod, M. L. et al. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature 611, 818–826 (2022).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wei, S. C. et al. A genetic mouse model recapitulates immune checkpoint inhibitor-associated myocarditis and supports a mechanism-based therapeutic intervention. Cancer Discov. 11, 614–625 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Liu, B., Zhang, Y., Wang, D., Hu, X. & Zhang, Z. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade. Nat. Cancer 3, 1123–1136 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van Eijs, M. J. M. et al. Toxicity-specific peripheral blood T and B cell dynamics in anti-PD-1 and combined immune checkpoint inhibition. Cancer Immunol. Immunother. 72, 4049–4064 (2023).

    Article 
    PubMed Central 

    Google Scholar
     

  • Auger, J.-P. et al. Metabolic rewiring promotes anti-inflammatory effects of glucocorticoids. Nature 629, 184–192 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lehmann, L. H. et al. Cardiomuscular biomarkers in the diagnosis and prognostication of immune checkpoint inhibitor myocarditis. Circulation 148, 473–486 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Herndler-Brandstetter, D. et al. KLRG1+ effector CD8+ T cells lose KLRG1, differentiate into all memory T cell lineages, and convey enhanced protective immunity. Immunity 48, 716–729.e8 (2018).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Slack, R. J., Macdonald, S. J. F., Roper, J. A., Jenkins, R. G. & Hatley, R. J. D. Emerging therapeutic opportunities for integrin inhibitors. Nat. Rev. Drug Discov. 21, 60–78 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Compartmental analysis of T-cell clonal dynamics as a function of pathologic response to neoadjuvant PD-1 blockade in resectable non-small cell lung cancer. Clin. Cancer Res. 26, 1327–1337 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ngwenyama, N. et al. CXCR3 regulates CD4+ T cell cardiotropism in pressure overload-induced cardiac dysfunction. JCI Insight 4, e125527 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Lv, H. J. et al. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J. Clin. Invest. 121, 1561 (2011).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Błyszczuk, P. Myocarditis in humans and in experimental animal models. Front. Cardiovasc. Med. 6, 64 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Kaya, Z., Katus, H. A. & Rose, N. R. Cardiac troponins and autoimmunity: their role in the pathogenesis of myocarditis and of heart failure. Clin. Immunol. 134, 80–88 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sansonetti, M., Waleczek, F. J. G., Jung, M., Thum, T. & Perbellini, F. Resident cardiac macrophages: crucial modulators of cardiac (patho)physiology. Basic Res. Cardiol. https://doi.org/10.1007/s00395-020-00836-6 (2020).

  • Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29–39 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dick, S. A. et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci. Immunol. 7, eabf7777 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Umbarawan, Y. et al. FABP5 is a sensitive marker for lipid-rich macrophages in the luminal side of atherosclerotic lesions. Int. Heart J. 62, 666–676 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lin, L.-Y. et al. Systems genetics approach to biomarker discovery: GPNMB and heart failure in mice and humans. G3 8, 3499–3506 (2018).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Xuan, Y., Chen, C., Wen, Z. & Wang, D. W. The roles of cardiac fibroblasts and endothelial cells in myocarditis. Front. Cardiovasc. Med. 9, 882027 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Alex, L. & Frangogiannis, N. G. Pericytes in the infarcted heart. Vasc. Biol. 1, H23–H31 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 608, 174–180 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518.e14 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kong, D. et al. The dynamic cellular landscape of grafts with acute rejection after heart transplantation. J. Heart Lung Transplant. 42, 160–172 (2023).

    Article 

    Google Scholar
     

  • Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Thomas, M. F. et al. Single-cell transcriptomic analyses reveal distinct immune cell contributions to epithelial barrier dysfunction in checkpoint inhibitor colitis. Nat. Med. 30, 1349–1362 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. T. et al. Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy. Nat. Commun. 13, 1970 (2022).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Ji, C. et al. Myocarditis in cynomolgus monkeys following treatment with immune checkpoint inhibitors. Clin. Cancer Res. 25, 4735–4748 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Boughdad, S. et al. Ga-DOTATOC PET/CT to detect immune checkpoint inhibitor-related myocarditis. J. Immunother. Cancer 9, 3594 (2021).

    Article 

    Google Scholar
     

  • Singh, S. et al. Tertiary lymphoid structure signatures are associated with immune checkpoint inhibitor related acute interstitial nephritis. JCI Insight https://doi.org/10.1172/jci.insight.165108 (2022).

  • Christen, U. et al. Combination treatment of a novel CXCR3 antagonist ACT-777991 with an anti-CD3 antibody synergistically increases persistent remission in experimental models of type 1 diabetes. Clin. Exp. Immunol. 214, 131–143 (2023).

    Article 
    PubMed Central 

    Google Scholar
     

  • Huang, Y. V. et al. A novel therapeutic approach using CXCR3 blockade to treat immune checkpoint inhibitor-mediated myocarditis. Preprint at bioRxiv https://doi.org/10.1101/2024.01.30.576279 (2024).

  • Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498–1512.e5 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Zou, F. et al. Efficacy and safety of vedolizumab and infliximab treatment for immune-mediated diarrhea and colitis in patients with cancer: a two-center observational study. J. Immunother. Cancer 9, e003277 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Cautela, J. et al. Intensified immunosuppressive therapy in patients with immune checkpoint inhibitor-induced myocarditis. J. Immunother. Cancer 8, e001887 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Palaskas, N., Lopez-Mattei, J., Durand, J. B., Iliescu, C. & Deswal, A. Immune checkpoint inhibitor myocarditis: pathophysiological characteristics, diagnosis, and treatment. J. Am. Heart Assoc. 9, e013757 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Cardiovascular magnetic resonance in immune checkpoint inhibitor-associated myocarditis. Eur. Heart J. 41, 1733–1743 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Friedrich, M. G. et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J. Am. Coll. Cardiol. 53, 1475–1487 (2009).

    Article 
    PubMed Central 

    Google Scholar
     

  • Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–482 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Aretz, H. T. et al. Myocarditis. A histopathologic definition and classification. Am. J. Cardiovasc. Pathol. 1, 3–14 (1987).

    CAS 

    Google Scholar
     

  • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Li, B. et al. Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nat. Methods 17, 793–798 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Gaublomme, J. T. et al. Nuclei multiplexing with barcoded antibodies for single-nucleus genomics. Nat. Commun. 10, 2907 (2019).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    Article 
    PubMed Central 

    Google Scholar
     

  • Huang, X. & Huang, Y. Cellsnp-lite: an efficient tool for genotyping single cells. Bioinformatics 37, 4569–4571 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Heaton, H. et al. Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes. Nat. Methods 17, 615–620 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Y., McCarthy, D. J. & Stegle, O. Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference. Genome Biol. 20, 273 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Batson, J., Royer, L. & Webber, J. Molecular cross-validation for single-cell RNA-seq. Preprint at bioRxiv https://doi.org/10.1101/786269 (2019).

  • Lun, A. T. L., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016).

    Article 

    Google Scholar
     

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • Fonseka, C. Y. et al. Mixed-effects association of single cells identifies an expanded effectorCD4+ T cell subset in rheumatoid arthritis. Sci. Transl. Med. 463, eaaq0305 (2018).

  • Sherwood, A. M. et al. Deep sequencing of the human TCRγ and TCRβ repertoires suggests that TCRβ rearranges after αβ and γδ T cell commitment. Sci. Transl. Med. 3, 90ra61 (2011).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Cottrell, T. et al. Evaluating T-cell cross-reactivity between tumors and immune-related adverse events with TCR sequencing: pitfalls in interpretations of functional relevance. J. Immunother. Cancer 9, e002642 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Gupta, N. T. et al. Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 31, 3356–3358 (2015).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Glanville, J. et al. Identifying specificity groups in the T cell receptor repertoire. Nature 547, 94–98 (2017).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Huang, H., Wang, C., Rubelt, F., Scriba, T. J. & Davis, M. M. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat. Biotechnol. 38, 1194–1202 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 596, 119–125 (2021).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cohen, C. J. et al. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. 67, 3898–3903 (2007).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Haga-Friedman, A., Horovitz-Fried, M. & Cohen, C. J. Incorporation of transmembrane hydrophobic mutations in the TCR enhance its surface expression and T cell functional avidity. J. Immunol. 188, 5538–5546 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Abelin, J. G. et al. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46, 315–326 (2017).

  • nealpsmith, swemeshy & ikernin. villani-lab/myocarditis: Publication code release (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.11519193 (2024).

  • Slowikowski, K. cellguide: Navigate single-cell RNA-seq datasets in your web browser (v0.01). Zenodo https://doi.org/10.5281/zenodo.8144195 (2023).

  • RELATED ARTICLES

    Most Popular

    Recent Comments