Friday, February 6, 2026
No menu items!
HomeNatureImaging the sub-moiré potential using an atomic single electron transistor

Imaging the sub-moiré potential using an atomic single electron transistor

  • Inbar, A. et al. The quantum twisting microscope. Nature 614, 682–687 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wallbank, J. R., Patel, A. A., Mucha-Kruczyński, M., Geim, A. K. & Fal’ko, V. I. Generic miniband structure of graphene on a hexagonal substrate. Phys. Rev. B 87, 245408 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Jung, J., Raoux, A., Qiao, Z. & MacDonald, A. H. Ab initio theory of moiré superlattice bands in layered two-dimensional materials. Phys. Rev. B 89, 205414 (2014).

    Article 
    ADS 

    Google Scholar
     

  • San-Jose, P., Gutiérrez-Rubio, A., Sturla, M. & Guinea, F. Electronic structure of spontaneously strained graphene on hexagonal boron nitride. Phys. Rev. B 90, 115152 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Jung, J. et al. Moiré band model and band gaps of graphene on hexagonal boron nitride. Phys. Rev. B 96, 085442 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, R. K. et al. High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. Science 357, 181–184 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Klein, D. R. et al. Electrical switching of a bistable moiré superconductor. Nat. Nanotechnol. 18, 331–335 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, M. et al. Ballistic miniband conduction in a graphene superlattice. Science 353, 1526–1529 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature 557, 404–408 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Z. et al. Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices. Nat. Phys. 10, 743–747 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ni, G. X. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shabani, S. et al. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat. Phys. 17, 720–725 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, M. J. et al. Scanning single-electron transistor microscopy: imaging individual charges. Science 276, 579–582 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Honig, M. et al. Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3. Nat. Mater. 12, 1112–1118 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. et al. Correlated Hofstadter spectrum and flavour phase diagram in magic-angle twisted bilayer graphene. Nat. Phys. 18, 825–831 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiu, C.-L. et al. High spatial resolution charge sensing of quantum Hall states. Proc. Natl Acad. Sci. USA 122, e2424781122 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, C. et al. Scanning quantum dot microscopy. Phys. Rev. Lett. 115, 026101 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hapala, P. et al. Mapping the electrostatic force field of single molecules from high-resolution scanning probe images. Nat. Commun. 7, 11560 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolat, R. et al. Electrostatic potentials of atomic nanostructures at metal surfaces quantified by scanning quantum dot microscopy. Nat. Commun. 15, 2259 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandni, U., Watanabe, K., Taniguchi, T. & Eisenstein, J. P. Evidence for defect-mediated tunneling in hexagonal boron nitride-based junctions. Nano Lett. 15, 7329–7333 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, D. et al. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy. Nat. Nanotechnol. 10, 949–953 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenaway, M. T. et al. Tunnel spectroscopy of localised electronic states in hexagonal boron nitride. Commun. Phys. 1, 94 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Edelberg, D. et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 19, 4371–4379 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Keren, I. et al. Quantum-dot assisted spectroscopy of degeneracy-lifted Landau levels in graphene. Nat. Commun. 11, 3408 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roelcke, C. et al. Ultrafast atomic-scale scanning tunnelling spectroscopy of a single vacancy in a monolayer crystal. Nat. Photon. 18, 595–602 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Birkbeck, J. et al. Quantum twisting microscopy of phonons in twisted bilayer graphene. Nature 641, 345–351 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cosma, D. A., Wallbank, J. R., Cheianov, V. & Fal’ko, V. I. Moiré pattern as a magnifying glass for strain and dislocations in van der Waals heterostructures. Faraday Discuss. 173, 137–43 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, K. et al. Band alignment in WSe2–graphene heterostructures. ACS Nano 9, 4527–4532 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devidas, T. R., Keren, I. & Steinberg, H. Spectroscopy of NbSe2 using energy-tunable defect-embedded quantum dots. Nano Lett. 21, 6931–6937 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, S. et al. Robust quantum oscillation of Dirac fermions in a single-defect resonant transistor. ACS Nano 15, 20013–20019 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo, Y. et al. Defect-assisted tunneling spectroscopy of electronic band structure in twisted bilayer graphene/hexagonal boron nitride moiré superlattices. Appl. Phys. Lett. 120, 203103 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vdovin, E. E. et al. A magnetically-induced Coulomb gap in graphene due to electron-electron interactions. Commun. Phys. 6, 159 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bardeen, J. & Shockley, W. Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 80, 72–80 (1950).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bokdam, M., Amlaki, T., Brocks, G. & Kelly, P. J. Band gaps in incommensurable graphene on hexagonal boron nitride. Phys. Rev. B 89, 201404 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Ferroelectric polarization of graphene/h-BN bilayer of different stacking orders. Surf. Interfaces 46, 103999 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, E. H. & Sarma, S. D. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rozen, A. et al. Entropic evidence for a Pomeranchuk effect in magic-angle graphene. Nature 592, 214–219 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments