Friday, February 6, 2026
No menu items!
HomeNatureImaging a terahertz superfluid plasmon in a two-dimensional superconductor

Imaging a terahertz superfluid plasmon in a two-dimensional superconductor

  • Shimano, R. & Tsuji, N. Higgs mode in superconductors. Annu. Rev. Condens. Matter Phys. 11, 103–124 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tinkham, M. Introduction to Superconductivity (Dover Publications, 1996).

  • Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basov, D. N. & Timusk, T. Electrodynamics of high-Tc superconductors. Rev. Mod. Phys. 77, 721–779 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Tachiki, M., Koyama, T. & Takahashi, S. Electromagnetic phenomena related to a low-frequency plasma in cuprate superconductors. Phys. Rev. B 50, 7065–7084 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Tamasaku, K., Nakamura, Y. & Uchida, S. Charge dynamics across the CuO2 planes in La2xSrxCuO4. Phys. Rev. Lett. 69, 1455–1458 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kadowaki, K. et al. Longitudinal Josephson-plasma excitation in Bi2Sr2CaCu2O8+δ: direct observation of the Nambu-Goldstone mode in a superconductor. Phys. Rev. B 56, 5617–5621 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Corson, J., Orenstein, J., Oh, S., O’Donnell, J. & Eckstein, J. N. Nodal quasiparticle lifetime in the superconducting state of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 85, 2569–2572 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higgs, P. W. Broken symmetries, massless particles and gauge fields. Phys. Rev. Lett. 12, 132–133 (1964).

    Article 

    Google Scholar
     

  • Nambu, Y. Energy gap, mass gap, and spontaneous symmetry breaking. Int. J. Mod. Phys. A 25, 4141–4148 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Pekker, D. & Varma, C. M. Amplitude/Higgs modes in condensed matter physics. Annu. Rev. Condens. Matter Phys. 6, 269–297 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Volkov, A. F. & Kogan, S. M. Collisionless relaxation of the energy gap in superconductors. Zh. Eksp. Teor. Fiz. 65, 2038–2046 (1973).


    Google Scholar
     

  • Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb1xTixN induced by terahertz pulse excitation. Phys. Rev. Lett. 111, 057002 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Katsumi, K. et al. Higgs mode in the d-wave superconductor Bi2Sr2CaCu2O8+x driven by an intense terahertz pulse. Phys. Rev. Lett. 120, 117001 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nambu, Y. Quasi-particles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648–663 (1960).

    Article 
    MathSciNet 

    Google Scholar
     

  • Anderson, P. W. Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963).

    Article 
    MathSciNet 

    Google Scholar
     

  • Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Fertig, H. A. & Das Sarma, S. Collective modes in layered superconductors. Phys. Rev. Lett. 65, 1482–1485 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Economou, E. N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969).

    Article 

    Google Scholar
     

  • Sun, Z., Fogler, M. M., Basov, D. N. & Millis, A. J. Collective modes and terahertz near-field response of superconductors. Phys. Rev. Res. 2, 023413 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Richards, D., Zayats, A., Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. A 362, 787–805 (2004).

    Article 

    Google Scholar
     

  • Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leitenstorfer, A. et al. The 2023 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 56, 223001 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dunmore, F. J. et al. Observation of below-gap plasmon excitations in superconducting YBa2Cu3O7 films. Phys. Rev. B 52, R731–R734 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Stiewe, F.-F. et al. Spintronic emitters for super-resolution in THz-spectral imaging. Appl. Phys. Lett. 120, 032406 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Handa, T. et al. Terahertz emission from giant optical rectification in a van der Waals material. Nat. Mater. 24, 1203–1208 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanchard, F. et al. Real-time terahertz near-field microscope. Opt. Express 19, 8277–8284 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S.-C. et al. Ghost spintronic THz-emitter-array microscope. Light Sci. Appl. 9, 99 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156–163 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitra, S., Avazpour, L. & Knezevic, I. Terahertz conductivity of two-dimensional materials: a review. J. Phys. Condens. Matter 37, 133005 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics 10, 483–488 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 1999).

  • Michael, M. H. et al. Resolving self-cavity effects in two-dimensional quantum materials. Preprint at https://doi.org/10.48550/arXiv.2505.12799 (2025).

  • Dressel, M. & Grüner, G. Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge Univ. Press, 2002).

  • Kaindl, R. A., Carnahan, M. A., Chemla, D. S., Oh, S. & Eckstein, J. N. Dynamics of Cooper pair formation in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 72, 060510 (2005).

    Article 

    Google Scholar
     

  • Cocker, T. L. et al. Microscopic origin of the Drude-Smith model. Phys. Rev. B 96, 205439 (2017).

    Article 

    Google Scholar
     

  • Molegraaf, H. J. A., Presura, C., van der Marel, D., Kes, P. H. & Li, M. Superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8+δ. Science 295, 2239–2241 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacobs, T., Sridhar, S., Li, Q., Gu, G. D. & Koshizuka, N. In-plane and c-axis microwave penetration depth of Bi2Sr2CaCu2O8+δ crystals. Phys. Rev. Lett. 75, 4516–4519 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ. Nature 398, 221–223 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Minnhagen, P. The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films. Rev. Mod. Phys. 59, 1001–1066 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Lee, W. S. et al. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature 450, 81–84 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pearl, J. Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett. 5, 65–66 (1964).

    Article 

    Google Scholar
     

  • Brandt, E. H. Vortex-vortex interaction in thin superconducting films. Phys. Rev. B 79, 134526 (2009).

    Article 

    Google Scholar
     

  • Banerjee, A. et al. Superfluid stiffness of twisted trilayer graphene superconductors. Nature 638, 93–98 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, M. et al. Superfluid stiffness of magic-angle twisted bilayer graphene. Nature 638, 99–105 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments