Friday, February 21, 2025
No menu items!
HomeNatureHypotaxy of wafer-scale single-crystal transition metal dichalcogenides

Hypotaxy of wafer-scale single-crystal transition metal dichalcogenides

  • Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hoang, A. T. et al. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. 18, 1439–1447 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bhimanapati, G. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, Z. et al. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature 621, 499–505 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jayachandran, D. et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature 625, 276–281 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, X., Feng, H., Wu, Y. & Jiao, L. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135, 5304–5307 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, Z. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, Q. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 20, 7193–7199 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chubarov, M. et al. Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zheng, P. et al. Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides. Nat. Commun. 14, 592 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhu, H. et al. Step engineering for nucleation and domain orientation control in WSe2 epitaxy on c-plane sapphire. Nat. Nanotechnol. 18, 1295–1302 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fu, J.-H. et al. Oriented lateral growth of two-dimensional materials on c-plane sapphire. Nat. Nanotechnol. 18, 1289–1294 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jung, Y. et al. Nucleation and growth of monolayer MoS2 at multisteps of MoO2 crystals by sulfurization. ACS Nano 17, 7865–7871 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zandiatashbar, A. et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lee, G., Yang, G., Cho, A., Han, J. W. & Kim, J. Defect-engineered graphene chemical sensors with ultrahigh sensitivity. Phys. Chem. Chem. Phys. 18, 14198–14204 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karvonen, L. et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nat. Commun. 8, 15714 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, L. et al. Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control. Nat. Commun. 15, 1825 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Alexeev, E. M. et al. Imaging of interlayer coupling in van der Waals heterostructures using a bright-field optical microscope. Nano Lett. 17, 5342–5349 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ly, T. H. et al. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides. ACS Nano 8, 11401–11408 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Visualizing grain boundaries in monolayer MoSe2 using mild H2O vapor etching. Nano Res. 11, 4082–4089 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zhang, Y. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging Its grain boundary. ACS Nano 7, 8963–8971 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, Y. et al. Invisible growth of microstructural defects in graphene chemical vapor deposition on copper foil. Carbon 96, 237–242 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Li, J. et al. Facile and rigorous route to distinguish the boundary structure of monolayer MoS2 domains by oxygen etching. Appl. Surf. Sci. 510, 145412 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Single-crystal MoS2 monolayer wafer grown on Au (111) film substrates. Small 17, 2100743 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Sood, A. et al. Quasi-ballistic thermal transport across MoS2 thin films. Nano Lett. 19, 2434–2442 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yu, Y., Minhaj, T., Huang, L., Yu, Y. & Cao, L. In-plane and interfacial thermal conduction of two-dimensional transition-metal dichalcogenides. Phys. Rev. Appl. 13, 034059 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yalon, E. et al. Temperature-dependent thermal boundary conductance of monolayer MoS2 by Raman thermometry. ACS Appl. Mater. Interfaces 9, 43013–43020 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feser, J. P., Liu, J. & Cahill, D. G. Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry. Rev. Sci. Instrum. 85, 104903 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Feser, J. P. & Cahill, D. G. Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots. Rev. Sci. Instrum. 83, 104901 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sledzinska, M. et al. Thermal conductivity of MoS2 polycrystalline nanomembranes. 2D Mater. 3, 035016 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Gu, X. & Yang, R. Phonon transport in single-layer transition metal dichalcogenides: a first-principles study. Appl. Phys. Lett. 105, 131903 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, P., Qian, X., Gu, X. & Yang, R. Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se) using time-domain thermoreflectance. Adv. Mater. 29, 1701068 (2017).

    Article 

    Google Scholar
     

  • Liu, J., Choi, G.-M. & Cahill, D. G. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys. 116, 233107 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, P., Qian, X. & Yang, R. Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 124, 161103 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Yang, J., Ziade, E. & Schmidt, A. J. Uncertainty analysis of thermoreflectance measurements. Rev. Sci. Instrum. 87, 014901 (2016).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lindroth, D. O. & Erhart, P. Thermal transport in van der Waals solids from first-principles calculations. Phys. Rev. B 94, 115205 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Smithe, K. K. H., English, C. D., Suryavanshi, S. V. & Pop, E. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 18, 4516–4522 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sanne, A. et al. Radio frequency transistors and circuits based on CVD MoS2. Nano Lett. 15, 5039–5045 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Amani, M., Burke, R. A., Proie, R. M. & Dubey, M. Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene. Nanotechnology 26, 115202 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xiao, J. et al. Record-high saturation current in end-bond contacted monolayer MoS2 transistors. Nano Res. 15, 475–481 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Jeon, J. et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 7, 1688–1695 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Smithe, K. K. H., Suryavanshi, S. V., Muñoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, W. et al. Photoelectron spectroscopic imaging and device applications of large-area patternable single-Layer MoS2 synthesized by chemical vapor deposition. ACS Nano 8, 4961–4968 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sebastian, A., Pendurthi, R., Choudhury, T. H., Redwing, J. M. & Das, S. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, J. et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 18, 456–463 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Son, J. et al. Atomically precise graphene etch stops for three dimensional integrated systems from two dimensional material heterostructures. Nat. Commun. 9, 3988 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lee, G.-H. et al. High-strength chemical-vapor–deposited graphene and grain boundaries. Science 340, 1073–1076 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jin, S. et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 362, 1021–1025 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kim, H. et al. In-plane anisotropy of graphene by strong interlayer interactions with van der Waals epitaxially grown MoO3. Sci. Adv. 9, eadg6696 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Sholl, D. & Steckel, J. A. Density Functional Theory: A Practical Introduction (Wiley, 2011).

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Javaid, M., Drumm, D. W., Russo, S. P. & Greentree, A. D. A study of size-dependent properties of MoS2 monolayer nanoflakes using density-functional theory. Sci Rep. 7, 9775 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J.-Y., Choi, S. M., Seo, W.-S. & Cho, W.-S. Thermal and electronic properties of exfoliated metal chalcogenides. Bull. Korean Chem. Soc. 31, 3225–3227 (2010).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Shin, Y. et al. Graphene via contact architecture for vertical integration of vdW heterostructure devices. Small 18, 2200882 (2022).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments