Huang, K. Lattice vibrations and optical waves in ionic crystals. Nature 167, 779–780 (1951).
Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).
Narayanaswamy, A., Shen, S. & Chen, G. Near-field radiative heat transfer between a sphere and a substrate. Phys. Rev. B 78, 115303 (2008).
Shen, S., Narayanaswamy, A. & Chen, G. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009).
Song, B. et al. Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nat. Nanotechnol. 10, 253–258 (2015).
Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).
Wehmeier, L. et al. Ultrabroadband terahertz near-field nanospectroscopy with a HgCdTe detector. ACS Photon. 10, 4329–4339 (2023).
Kaminer, I. et al. Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene. Nat. Commun. 7, ncomms11880 (2016).
Maier, S. A. et al. Plasmonics: Fundamentals and Applications Vol. 1 (Springer, 2007).
Dias, E. J. & Garcia de Abajo, F. J. Fundamental limits to the coupling between light and 2D polaritons by small scatterers. ACS Nano 13, 5184–5197 (2019).
Bharadwaj, P., Bouhelier, A. & Novotny, L. Electrical excitation of surface plasmons. Phys. Rev. Lett. 106, 226802 (2011).
Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).
Graf, A. et al. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nat. Mater. 16, 911–917 (2017).
Bhattacharya, P. et al. Room temperature electrically injected polariton laser. Phys. Rev. Lett. 112, 236802 (2014).
Wang, S. & Mahan, G. Electron scattering from surface excitations. Phys. Rev. B 6, 4517 (1972).
Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).
Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).
Giles, A. J. et al. Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett. 16, 3858–3865 (2016).
Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).
Pons-Valencia, P. et al. Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas. Nat. Commun. 10, 3242 (2019).
Castilla, S. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 11, 4872 (2020).
Principi, A. et al. Super-Planckian electron cooling in a van der Waals stack. Phys. Rev. Lett. 118, 126804 (2017).
Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater 16, 182–194 (2017).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).
Yamoah, M. A., Yang, W., Pop, E. & Goldhaber-Gordon, D. High-velocity saturation in graphene encapsulated by hexagonal boron nitride. ACS Nano 11, 9914–9919 (2017).
Ashida, Y., İmamoğlu, Amc & Demler, E. Cavity quantum electrodynamics with hyperbolic van der Waals materials. Phys. Rev. Lett. 130, 216901 (2023).
Yang, W. et al. A graphene Zener–Klein transistor cooled by a hyperbolic substrate. Nat. Nanotechnol. 13, 47–52 (2018).
Brasington, A. et al. Phonon lifetimes in boron-isotope-enriched graphene-hexagonal boron nitride devices. Phys. Status Solidi Rapid Res. Lett. 16, 2200030 (2022).
Baudin, E., Voisin, C. & Plaçais, B. Hyperbolic phonon polariton electroluminescence as an electronic cooling pathway. Adv. Funct. Mater. 30, 1904783 (2020).
Vandecasteele, N., Barreiro, A., Lazzeri, M., Bachtold, A. & Mauri, F. Current–voltage characteristics of graphene devices: interplay between Zener–Klein tunneling and defects. Phys. Rev. B 82, 045416 (2010).
Schmitt, A. et al. Mesoscopic Klein–Schwinger effect in graphene. Nat. Phys. 19, 830–835 (2023).
Berdyugin, A. I. et al. Out-of-equilibrium criticalities in graphene superlattices. Science 375, 430–433 (2022).
Andersen, T. I. et al. Electron–phonon instability in graphene revealed by global and local noise probes. Science 364, 154–157 (2019).
Spector, H. N. Amplification of acoustic waves through interaction with conduction electrons. Phys. Rev. 127, 1084–1090 (1962).
Pippard, A. B. Acoustic amplification in semiconductors and metals. Philos. Mag. 8, 161–165 (1963).
Komirenko, S. M., Kim, K. W., Demidenko, A. A., Kochelap, V. A. & Stroscio, M. A. Generation and amplification of sub-THz coherent acoustic phonons under the drift of two-dimensional electrons. Phys. Rev. B 62, 7459–7469 (2000).
Huang, Z. et al. Generation and amplification of confined acoustic phonons in a quantum wire via the Čerenkov effect. Phys. Lett. A 342, 181–187 (2005).
Suresha, K., Kubakaddi, S., Mulimani, B. & Lee, S. L. Acoustic wave amplification in one-dimensional quantum well wires. Physica E 33, 50–56 (2006).
Liu, S. et al. Single crystal growth of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 30, 6222–6225 (2018).
Hwang, E. H. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008).
Dai, S. et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2017).
Guo, Y., Cortes, C. L., Molesky, S. & Jacob, Z. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phy. Lett. 101, 131106 (2012).
Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394–399 (2013).
Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654–659 (2008).
Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008).
Xia, F., Farmer, D. B., Lin, Y.-M. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).
Falkovsky, L. A. Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008).
Giles, A. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mat. 17, 134–139 (2018).
Guo, Q. Data and computer codes for “Hyperbolic phonon-polariton electroluminescence in 2D heterostructures”. figshare https://doi.org/10.6084/m9.figshare.25237654 (2024).