Friday, March 21, 2025
No menu items!
HomeNatureHyperbolic phonon-polariton electroluminescence in 2D heterostructures

Hyperbolic phonon-polariton electroluminescence in 2D heterostructures

  • Huang, K. Lattice vibrations and optical waves in ionic crystals. Nature 167, 779–780 (1951).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Narayanaswamy, A., Shen, S. & Chen, G. Near-field radiative heat transfer between a sphere and a substrate. Phys. Rev. B 78, 115303 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Shen, S., Narayanaswamy, A. & Chen, G. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Song, B. et al. Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nat. Nanotechnol. 10, 253–258 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wehmeier, L. et al. Ultrabroadband terahertz near-field nanospectroscopy with a HgCdTe detector. ACS Photon. 10, 4329–4339 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Kaminer, I. et al. Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene. Nat. Commun. 7, ncomms11880 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maier, S. A. et al. Plasmonics: Fundamentals and Applications Vol. 1 (Springer, 2007).

  • Dias, E. J. & Garcia de Abajo, F. J. Fundamental limits to the coupling between light and 2D polaritons by small scatterers. ACS Nano 13, 5184–5197 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bharadwaj, P., Bouhelier, A. & Novotny, L. Electrical excitation of surface plasmons. Phys. Rev. Lett. 106, 226802 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Graf, A. et al. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nat. Mater. 16, 911–917 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bhattacharya, P. et al. Room temperature electrically injected polariton laser. Phys. Rev. Lett. 112, 236802 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, S. & Mahan, G. Electron scattering from surface excitations. Phys. Rev. B 6, 4517 (1972).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Giles, A. J. et al. Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett. 16, 3858–3865 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pons-Valencia, P. et al. Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas. Nat. Commun. 10, 3242 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Castilla, S. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 11, 4872 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Principi, A. et al. Super-Planckian electron cooling in a van der Waals stack. Phys. Rev. Lett. 118, 126804 (2017).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater 16, 182–194 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yamoah, M. A., Yang, W., Pop, E. & Goldhaber-Gordon, D. High-velocity saturation in graphene encapsulated by hexagonal boron nitride. ACS Nano 11, 9914–9919 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashida, Y., İmamoğlu, Amc & Demler, E. Cavity quantum electrodynamics with hyperbolic van der Waals materials. Phys. Rev. Lett. 130, 216901 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, W. et al. A graphene Zener–Klein transistor cooled by a hyperbolic substrate. Nat. Nanotechnol. 13, 47–52 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brasington, A. et al. Phonon lifetimes in boron-isotope-enriched graphene-hexagonal boron nitride devices. Phys. Status Solidi Rapid Res. Lett. 16, 2200030 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baudin, E., Voisin, C. & Plaçais, B. Hyperbolic phonon polariton electroluminescence as an electronic cooling pathway. Adv. Funct. Mater. 30, 1904783 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vandecasteele, N., Barreiro, A., Lazzeri, M., Bachtold, A. & Mauri, F. Current–voltage characteristics of graphene devices: interplay between Zener–Klein tunneling and defects. Phys. Rev. B 82, 045416 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Schmitt, A. et al. Mesoscopic Klein–Schwinger effect in graphene. Nat. Phys. 19, 830–835 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Berdyugin, A. I. et al. Out-of-equilibrium criticalities in graphene superlattices. Science 375, 430–433 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Andersen, T. I. et al. Electron–phonon instability in graphene revealed by global and local noise probes. Science 364, 154–157 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Spector, H. N. Amplification of acoustic waves through interaction with conduction electrons. Phys. Rev. 127, 1084–1090 (1962).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Pippard, A. B. Acoustic amplification in semiconductors and metals. Philos. Mag. 8, 161–165 (1963).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Komirenko, S. M., Kim, K. W., Demidenko, A. A., Kochelap, V. A. & Stroscio, M. A. Generation and amplification of sub-THz coherent acoustic phonons under the drift of two-dimensional electrons. Phys. Rev. B 62, 7459–7469 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, Z. et al. Generation and amplification of confined acoustic phonons in a quantum wire via the Čerenkov effect. Phys. Lett. A 342, 181–187 (2005).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Suresha, K., Kubakaddi, S., Mulimani, B. & Lee, S. L. Acoustic wave amplification in one-dimensional quantum well wires. Physica E 33, 50–56 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Liu, S. et al. Single crystal growth of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 30, 6222–6225 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Hwang, E. H. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Dai, S. et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Guo, Y., Cortes, C. L., Molesky, S. & Jacob, Z. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phy. Lett. 101, 131106 (2012).

  • Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394–399 (2013).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654–659 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Xia, F., Farmer, D. B., Lin, Y.-M. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Falkovsky, L. A. Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008).

  • Giles, A. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mat. 17, 134–139 (2018).

  • Guo, Q. Data and computer codes for “Hyperbolic phonon-polariton electroluminescence in 2D heterostructures”. figshare https://doi.org/10.6084/m9.figshare.25237654 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments