Saturday, February 22, 2025
No menu items!
HomeNatureHydrogen escaping from a pair of exoplanets smaller than Neptune

Hydrogen escaping from a pair of exoplanets smaller than Neptune

  • Howard, A. W. et al. Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. Ser. 201, 15 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Dong, S. & Zhu, Z. Fast rise of “Neptune-size” planets (4–8 R) from P 10 to 250 days—statistics of Kepler planet candidates up to 0.75 AU. Astrophys. J. 778, 53 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kunimoto, M., Winn, J., Ricker, G. R. & Vanderspek, R. K. Predicting the exoplanet yield of the TESS Prime and extended missions through years 1–7. Astrophys. J. 163, 290 (2022).


    Google Scholar
     

  • Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Lopez, E. D. & Fortney, J. J. The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776, 2 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Ginzburg, S., Schlichting, H. E. & Sari, R. Core-powered mass-loss and the radius distribution of small exoplanets. Mon. Not. R. Astron. Soc. 476, 759–765 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Gupta, A. & Schlichting, H. E. Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism. Mon. Not. R. Astron. Soc. 487, 24–33 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lee, E. J. & Connors, N. J. Primordial radius gap and potentially broad core mass distributions of super-Earths and sub-Neptunes. Astrophys. J. 908, 32 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Bean, J. L., Raymond, S. N. & Owen, J. E. The nature and origins of sub-Neptune size planets. J. Geophys. Res. Planets 126, e2020JE006639 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars. Science 377, 1211–1214 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rogers, J. G., Schlichting, H. E. & Owen, J. E. Conclusive evidence for a population of water worlds around M dwarfs remains elusive. Astrophys. J. Lett. 947, 19 (2023).

  • Burn, R. et al. A radius valley between migrated steam worlds and evaporated rocky cores. Nat. Astron. 8, 463–471 (2024).

  • Lecavelier des Etangs, A. A diagram to determine the evaporation status of extrasolar planets. Astron. Astrophys. 461, 1185–1193 (2007).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Owen, J. E. & Jackson, A. P. Planetary evaporation by UV and X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425, 2931–2947 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Luque, R. et al. A planetary system with two transiting mini-Neptunes near the radius valley transition around the bright M dwarf TOI-776. Astron. Astrophys. 645, A41 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Cloutier, R. & Menou, K. Evolution of the radius valley around low-mass stars from Kepler and K2. Astron. J. 159, 211 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Angus, R. et al. Exploring the evolution of stellar rotation using galactic kinematics. Astron. J. 160, 90 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Engle, S. G. & Guinan, E. F. Living with a red dwarf: the rotation-age relationship of M dwarfs. Astrophys. J. Lett. 954, 50 (2023).

  • Lu, Y., Angus, R., Foreman-Mackey, D. & Hattori, S. In this day and age: an empirical gyrochronology relation for partially and fully convective single field stars. Astron. J. 167, 159 (2024).

  • Schreyer, E., Owen, J. E., Loyd, R. O. P. & Murray-Clay, R. Using Lyman-α transits to constrain models of atmospheric escape. Mon. Not. R. Astron. Soc. 533, 3296–3311 (2024).

  • Owen, J. E. & Adams, F. C. Effects of magnetic fields on the location of the evaporation valley for low-mass exoplanets. Mon. Not. R. Astron. Soc. 490, 15–20 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bourrier, V. & Lecavelier des Etangs, A. 3D model of hydrogen atmospheric escape from HD 209458b and HD 189733b: radiative blow-out and stellar wind interactions. Astron. Astrophys. 557, A124 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kislyakova, K. G. et al. Transit Lyman-α signatures of terrestrial planets in the habitable zones of M dwarfs. Astron. Astrophys. 623, A131 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Bourrier, V. et al. Hubble PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b. Astron. Astrophys. 620, A147 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zhang, M. et al. Detection of ongoing mass loss from HD 63433c, a young mini-Neptune. Astron. J 163, 68 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Zhang, M. et al. Detection of atmospheric escape from four young mini-Neptunes. Astron. J 165, 62 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Zhang, M., Dai, F., Bean, J. L., Knutson, H. A. & Rescigno, F. Outflowing helium from a mature mini-Neptune. Astrophys. J. Lett. 953, 25 (2023).

  • Zahnle, K. J. & Kasting, J. F. Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 68, 462–480 (1986).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Hunten, D. M., Pepin, R. O. & Walker, J. C. G. Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Murray-Clay, R. A., Chiang, E. I., & Murray, N. Atmospheric escape from hot Jupiters. Astrophys. J. 693, 23–42 (2009).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • García Muñoz, A. et al. A heavy molecular weight atmosphere for the super-Earth π Men c. Astrophys. J. 907, L36 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Piaulet-Ghorayeb, C. et al. JWST/NIRISS reveals the water-rich “steam world” atmosphere of GJ 9827 d. Astrophys. J. 974, L10 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley. Hints from formation and evolution models. Astron. Astrophys. 643, L1 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Rogers, J. G., Gupta, A., Owen, J. E. & Schlichting, H. E. Photoevaporation versus core-powered mass-loss: model comparison with the 3D radius gap. Mon. Not. R. Astron. Soc. 508, 5886 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Sohn, T. S. STIS Data Handbook v.7 (STScI, 2019).

  • Medallon, S. & Welty, D. STIS Instrument Handbook for Cycle 31 v.22.0 (STScI, 2023).

  • Bohlin, R. & Hartig, G. Clear aperture fractional transmission for point sources. STIS Instrum. Sci. Rep. 98, 20 (1998).

    MATH 

    Google Scholar
     

  • Ehrenreich, D. et al. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522, 459–461 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lecavelier des Etangs, A. et al. Evaporation of the planet HD 189733b observed in H I Lyman-α. Astron. Astrophys. 514, A72 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Kulow, J. R., France, K., Linsky, J. & Parke Loyd, R. O. LYα transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436b. Astrophys. J. 786, 132 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ben-Jaffel, L. et al. Signatures of strong magnetization and a metal-poor atmosphere for a Neptune-sized exoplanet. Nat Astron 6, 141–153 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liddle, A. R. Information criteria for astrophysical model selection. Mon. Not. R. Astron. Soc. 377, L74–L78 (2007).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wilson, D. J. et al. Testing Lyα emission-line reconstruction routines at multiple velocities in one system. Astrophys. J. 936, 189 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Karamanis, M., Beutler, F. & Peacock, J. A. zeus: a PYTHON implementation of ensemble slice sampling for efficient Bayesian parameter inference. Mon. Not. R. Astron. Soc. 508, 3589–3603 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Karamanis, M. & Beutler, F. Ensemble slice sampling. Stat. Comput. 31, 61 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Linsky, J. L., Fontenla, J. & France, K. The intrinsic extreme ultraviolet fluxes of F5 V to M5 V stars. Astrophys. J. 780, 61 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Duvvuri, G. M. et al. Reconstructing the extreme ultraviolet emission of cool dwarfs using differential emission measure polynomials. Astrophys. J. 913, 40 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Feinstein, A. D. et al. AU Microscopii in the far-UV: observations in quiescence, during flares, and implications for AU Mic b and c. Astron. J 164, 110 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C. & Young, P. R. CHIANTI—an atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 125, 149–173 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • del Zanna, G. & Young, P. R. Atomic data for plasma spectroscopy: the CHIANTI database, improvements and challenges. Atoms 8, 46 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Peacock, S. et al. Predicting the extreme ultraviolet radiation environment of exoplanets around low-mass stars: GJ 832, GJ 176, and GJ 436. Astrophys. J. 886, 77 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Peacock, S. et al. HAZMAT VI: the evolution of extreme ultraviolet radiation emitted from early M stars. Astrophys. J. 895, 5 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Tilipman, D., Vieytes, M., Linsky, J. L., Buccino, A. P. & France, K. Semiempirical modeling of the atmospheres of the M dwarf exoplanet hosts GJ 832 and GJ 581. Astrophys. J. 909, 61 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Johnstone, C. P., Bartel, M. & Güdel, M. The active lives of stars: a complete description of the rotation and XUV evolution of F, G, K, and M dwarfs. Astron. Astrophys. 649, A96 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Drake, J. J. et al. NExtUP: the normal-incidence extreme ultraviolet photometer. Proc. SPIE 11821, 1182108 (2021).

  • France, K. et al. Extreme-ultraviolet stellar characterization for atmospheric physics and evolution mission: motivation and overview. J. Astron. Telesc. Instrum. Syst. 8, 014006 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Llama, J. & Shkolnik, E. L. Transiting the Sun. II. The impact of stellar activity on Lyα transits. Astrophys. J. 817, 81 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Linssen, D. & Oklopčić, A. Expanding the inventory of spectral lines used to trace atmospheric escape in exoplanets. Astron. Astrophys. 675, 193 (2023).

  • Avrett, E. H. & Loeser, R. Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. Astrophys. J. Suppl. Ser. 175, 229–276 (2008).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Owen, J. E. & Adams, F. C. Magnetically controlled mass-loss from extrasolar planets in close orbits. Mon. Not. R. Astron. Soc. 444, 3761–3779 (2014).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Bisikalo, D. et al. Three-dimensional gas dynamic simulation of the interaction between the exoplanet WASP-12b and its host star. Astrophys. J. 764, 19 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Matsakos, T., Uribe, A. & Königl, A. Classification of magnetized star-planet interactions: bow shocks, tails, and inspiraling flows. Astron. Astrophys. 578, A6 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Carroll-Nellenback, J. et al. Hot planetary winds near a star: dynamics, wind-wind interactions, and observational signatures. Mon. Not. R. Astron. Soc. 466, 2458–2473 (2017).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Khodachenko, M. L. et al. Global 3D hydrodynamic modeling of in-transit Lyα absorption of GJ 436b. Astrophys. J. 885, 67 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McCann, J., Murray-Clay, R. A., Kratter, K. & Krumholz, M. R. Morphology of hydrodynamic winds: a study of planetary winds in stellar environments. Astrophys. J. 873, 89 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Debrecht, A. et al. Effects of radiation pressure on the evaporative wind of HD 209458b. Mon. Not. R. Astron. Soc. 493, 1292–1305 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Carolan, S., Vidotto, A. A., Villarreal D’Angelo, C. & Hazra, G. Effects of the stellar wind on the Ly α transit of close-in planets. Mon. Not. R. Astron. Soc. 500, 3382–3393 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Hazra, G., Vidotto, A. A., Carolan, S., Villarreal D’Angelo, C. & Manchester, W. The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b. Mon. Not. R. Astron. Soc. 509, 5858–5871 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • MacLeod, M. & Oklopčić, A. Stellar wind confinement of evaporating exoplanet atmospheres and its signatures in 1083 nm observations. Astrophys. J. 926, 226 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Salz, M., Schneider, P. C., Czesla, S. & Schmitt, J. H. M. M. Energy-limited escape revised: the transition from strong planetary winds to stable thermospheres. Astron. Astrophys. 585, L2 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Lavie, B. et al. The long egress of GJ 436b’s giant exosphere. Astron. Astrophys. 605, L7 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Tremblin, P. & Chiang, E. Colliding planetary and stellar winds: charge exchange and transit spectroscopy in neutral hydrogen. Mon. Not. R. Astron. Soc. 428, 2565–2576 (2013).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Debrecht, A. et al. Effects of charge exchange on the evaporative wind of HD 209458b. Mon. Not. R. Astron. Soc. 517, 1724–1736 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Bourrier, V., Lecavelier des Etangs, A., Ehrenreich, D., Tanaka, Y. A. & Vidotto, A. A. An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b. Astron. Astrophys. 591, A121 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Villarreal D’Angelo, C., Vidotto, A. A., Esquivel, A., Hazra, G. & Youngblood, A. GJ 436b and the stellar wind interaction: simulations constraints using Ly α and H α transits. Mon. Not. R. Astron. Soc. 501, 4383–4395 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Mason, E. A. & Marrero, T. R. in Advances in Atomic and Molecular Physics Vol. 6 (eds Bates, D. R. & Esterman, I.) 155–232 (Elsevier, 1970).

  • Owen, J. E. & Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Rogers, J. G. & Owen, J. E. Unveiling the planet population at birth. Mon. Not. R. Astron. Soc. 503, 1526–1542 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Valencia, D., Ikoma, M., Guillot, T. & Nettelmann, N. Composition and fate of short-period super-Earths: the case of CoRoT-7b. Astron. Astrophys. 516, A20 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Loyd, R. O. Parke. Hydrogen escaping from a pair of exoplanets smaller than Neptune: data analysis code. Zenodo https://doi.org/10.5281/zenodo.13976674 (2024).

  • Petigura, E. A. et al. The California-Kepler Survey. X. The radius gap as a function of stellar mass, metallicity, and age. Astron. J. 163, 179 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gaia Collaboration et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Gaia Collaboration et al. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Woods, T. N. et al. Solar EUV Experiment (SEE): mission overview and first results. J. Geophys. Res. Space Phys. 110, A01312 (2005).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Youngblood, A. et al. Intrinsic Lyα profiles of high-velocity G, K, and M dwarfs. Astrophys. J. 926, 129 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Redfield, S. & Linsky, J. L. The structure of the local interstellar medium. IV. Dynamics, morphology, physical properties, and implications of cloud-cloud interactions. Astrophys. J. 673, 283–314 (2008).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Linsky, J. L. et al. What is the total deuterium abundance in the local galactic disk? Astrophys. J. 647, 1106–1124 (2006).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments