Howard, A. W. et al. Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. Ser. 201, 15 (2012).
Dong, S. & Zhu, Z. Fast rise of “Neptune-size” planets (4–8 R⊕) from P ∼ 10 to ∼250 days—statistics of Kepler planet candidates up to ∼0.75 AU. Astrophys. J. 778, 53 (2013).
Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).
Kunimoto, M., Winn, J., Ricker, G. R. & Vanderspek, R. K. Predicting the exoplanet yield of the TESS Prime and extended missions through years 1–7. Astrophys. J. 163, 290 (2022).
Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013).
Lopez, E. D. & Fortney, J. J. The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776, 2 (2013).
Ginzburg, S., Schlichting, H. E. & Sari, R. Core-powered mass-loss and the radius distribution of small exoplanets. Mon. Not. R. Astron. Soc. 476, 759–765 (2018).
Gupta, A. & Schlichting, H. E. Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism. Mon. Not. R. Astron. Soc. 487, 24–33 (2019).
Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).
Lee, E. J. & Connors, N. J. Primordial radius gap and potentially broad core mass distributions of super-Earths and sub-Neptunes. Astrophys. J. 908, 32 (2021).
Bean, J. L., Raymond, S. N. & Owen, J. E. The nature and origins of sub-Neptune size planets. J. Geophys. Res. Planets 126, e2020JE006639 (2021).
Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars. Science 377, 1211–1214 (2022).
Rogers, J. G., Schlichting, H. E. & Owen, J. E. Conclusive evidence for a population of water worlds around M dwarfs remains elusive. Astrophys. J. Lett. 947, 19 (2023).
Burn, R. et al. A radius valley between migrated steam worlds and evaporated rocky cores. Nat. Astron. 8, 463–471 (2024).
Lecavelier des Etangs, A. A diagram to determine the evaporation status of extrasolar planets. Astron. Astrophys. 461, 1185–1193 (2007).
Owen, J. E. & Jackson, A. P. Planetary evaporation by UV and X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425, 2931–2947 (2012).
Luque, R. et al. A planetary system with two transiting mini-Neptunes near the radius valley transition around the bright M dwarf TOI-776. Astron. Astrophys. 645, A41 (2021).
Cloutier, R. & Menou, K. Evolution of the radius valley around low-mass stars from Kepler and K2. Astron. J. 159, 211 (2020).
Angus, R. et al. Exploring the evolution of stellar rotation using galactic kinematics. Astron. J. 160, 90 (2020).
Engle, S. G. & Guinan, E. F. Living with a red dwarf: the rotation-age relationship of M dwarfs. Astrophys. J. Lett. 954, 50 (2023).
Lu, Y., Angus, R., Foreman-Mackey, D. & Hattori, S. In this day and age: an empirical gyrochronology relation for partially and fully convective single field stars. Astron. J. 167, 159 (2024).
Schreyer, E., Owen, J. E., Loyd, R. O. P. & Murray-Clay, R. Using Lyman-α transits to constrain models of atmospheric escape. Mon. Not. R. Astron. Soc. 533, 3296–3311 (2024).
Owen, J. E. & Adams, F. C. Effects of magnetic fields on the location of the evaporation valley for low-mass exoplanets. Mon. Not. R. Astron. Soc. 490, 15–20 (2019).
Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003).
Bourrier, V. & Lecavelier des Etangs, A. 3D model of hydrogen atmospheric escape from HD 209458b and HD 189733b: radiative blow-out and stellar wind interactions. Astron. Astrophys. 557, A124 (2013).
Kislyakova, K. G. et al. Transit Lyman-α signatures of terrestrial planets in the habitable zones of M dwarfs. Astron. Astrophys. 623, A131 (2019).
Bourrier, V. et al. Hubble PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b. Astron. Astrophys. 620, A147 (2018).
Zhang, M. et al. Detection of ongoing mass loss from HD 63433c, a young mini-Neptune. Astron. J 163, 68 (2022).
Zhang, M. et al. Detection of atmospheric escape from four young mini-Neptunes. Astron. J 165, 62 (2023).
Zhang, M., Dai, F., Bean, J. L., Knutson, H. A. & Rescigno, F. Outflowing helium from a mature mini-Neptune. Astrophys. J. Lett. 953, 25 (2023).
Zahnle, K. J. & Kasting, J. F. Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 68, 462–480 (1986).
Hunten, D. M., Pepin, R. O. & Walker, J. C. G. Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987).
Murray-Clay, R. A., Chiang, E. I., & Murray, N. Atmospheric escape from hot Jupiters. Astrophys. J. 693, 23–42 (2009).
García Muñoz, A. et al. A heavy molecular weight atmosphere for the super-Earth π Men c. Astrophys. J. 907, L36 (2021).
Piaulet-Ghorayeb, C. et al. JWST/NIRISS reveals the water-rich “steam world” atmosphere of GJ 9827 d. Astrophys. J. 974, L10 (2024).
Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley. Hints from formation and evolution models. Astron. Astrophys. 643, L1 (2020).
Rogers, J. G., Gupta, A., Owen, J. E. & Schlichting, H. E. Photoevaporation versus core-powered mass-loss: model comparison with the 3D radius gap. Mon. Not. R. Astron. Soc. 508, 5886 (2021).
Sohn, T. S. STIS Data Handbook v.7 (STScI, 2019).
Medallon, S. & Welty, D. STIS Instrument Handbook for Cycle 31 v.22.0 (STScI, 2023).
Bohlin, R. & Hartig, G. Clear aperture fractional transmission for point sources. STIS Instrum. Sci. Rep. 98, 20 (1998).
Ehrenreich, D. et al. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522, 459–461 (2015).
Lecavelier des Etangs, A. et al. Evaporation of the planet HD 189733b observed in H I Lyman-α. Astron. Astrophys. 514, A72 (2010).
Kulow, J. R., France, K., Linsky, J. & Parke Loyd, R. O. LYα transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436b. Astrophys. J. 786, 132 (2014).
Ben-Jaffel, L. et al. Signatures of strong magnetization and a metal-poor atmosphere for a Neptune-sized exoplanet. Nat Astron 6, 141–153 (2022).
Liddle, A. R. Information criteria for astrophysical model selection. Mon. Not. R. Astron. Soc. 377, L74–L78 (2007).
Wilson, D. J. et al. Testing Lyα emission-line reconstruction routines at multiple velocities in one system. Astrophys. J. 936, 189 (2022).
Karamanis, M., Beutler, F. & Peacock, J. A. zeus: a PYTHON implementation of ensemble slice sampling for efficient Bayesian parameter inference. Mon. Not. R. Astron. Soc. 508, 3589–3603 (2021).
Karamanis, M. & Beutler, F. Ensemble slice sampling. Stat. Comput. 31, 61 (2021).
Linsky, J. L., Fontenla, J. & France, K. The intrinsic extreme ultraviolet fluxes of F5 V to M5 V stars. Astrophys. J. 780, 61 (2014).
Duvvuri, G. M. et al. Reconstructing the extreme ultraviolet emission of cool dwarfs using differential emission measure polynomials. Astrophys. J. 913, 40 (2021).
Feinstein, A. D. et al. AU Microscopii in the far-UV: observations in quiescence, during flares, and implications for AU Mic b and c. Astron. J 164, 110 (2022).
Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C. & Young, P. R. CHIANTI—an atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 125, 149–173 (1997).
del Zanna, G. & Young, P. R. Atomic data for plasma spectroscopy: the CHIANTI database, improvements and challenges. Atoms 8, 46 (2020).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
Peacock, S. et al. Predicting the extreme ultraviolet radiation environment of exoplanets around low-mass stars: GJ 832, GJ 176, and GJ 436. Astrophys. J. 886, 77 (2019).
Peacock, S. et al. HAZMAT VI: the evolution of extreme ultraviolet radiation emitted from early M stars. Astrophys. J. 895, 5 (2020).
Tilipman, D., Vieytes, M., Linsky, J. L., Buccino, A. P. & France, K. Semiempirical modeling of the atmospheres of the M dwarf exoplanet hosts GJ 832 and GJ 581. Astrophys. J. 909, 61 (2021).
Johnstone, C. P., Bartel, M. & Güdel, M. The active lives of stars: a complete description of the rotation and XUV evolution of F, G, K, and M dwarfs. Astron. Astrophys. 649, A96 (2021).
Drake, J. J. et al. NExtUP: the normal-incidence extreme ultraviolet photometer. Proc. SPIE 11821, 1182108 (2021).
France, K. et al. Extreme-ultraviolet stellar characterization for atmospheric physics and evolution mission: motivation and overview. J. Astron. Telesc. Instrum. Syst. 8, 014006 (2022).
Llama, J. & Shkolnik, E. L. Transiting the Sun. II. The impact of stellar activity on Lyα transits. Astrophys. J. 817, 81 (2016).
Linssen, D. & Oklopčić, A. Expanding the inventory of spectral lines used to trace atmospheric escape in exoplanets. Astron. Astrophys. 675, 193 (2023).
Avrett, E. H. & Loeser, R. Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. Astrophys. J. Suppl. Ser. 175, 229–276 (2008).
Owen, J. E. & Adams, F. C. Magnetically controlled mass-loss from extrasolar planets in close orbits. Mon. Not. R. Astron. Soc. 444, 3761–3779 (2014).
Bisikalo, D. et al. Three-dimensional gas dynamic simulation of the interaction between the exoplanet WASP-12b and its host star. Astrophys. J. 764, 19 (2013).
Matsakos, T., Uribe, A. & Königl, A. Classification of magnetized star-planet interactions: bow shocks, tails, and inspiraling flows. Astron. Astrophys. 578, A6 (2015).
Carroll-Nellenback, J. et al. Hot planetary winds near a star: dynamics, wind-wind interactions, and observational signatures. Mon. Not. R. Astron. Soc. 466, 2458–2473 (2017).
Khodachenko, M. L. et al. Global 3D hydrodynamic modeling of in-transit Lyα absorption of GJ 436b. Astrophys. J. 885, 67 (2019).
McCann, J., Murray-Clay, R. A., Kratter, K. & Krumholz, M. R. Morphology of hydrodynamic winds: a study of planetary winds in stellar environments. Astrophys. J. 873, 89 (2019).
Debrecht, A. et al. Effects of radiation pressure on the evaporative wind of HD 209458b. Mon. Not. R. Astron. Soc. 493, 1292–1305 (2020).
Carolan, S., Vidotto, A. A., Villarreal D’Angelo, C. & Hazra, G. Effects of the stellar wind on the Ly α transit of close-in planets. Mon. Not. R. Astron. Soc. 500, 3382–3393 (2021).
Hazra, G., Vidotto, A. A., Carolan, S., Villarreal D’Angelo, C. & Manchester, W. The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b. Mon. Not. R. Astron. Soc. 509, 5858–5871 (2022).
MacLeod, M. & Oklopčić, A. Stellar wind confinement of evaporating exoplanet atmospheres and its signatures in 1083 nm observations. Astrophys. J. 926, 226 (2022).
Salz, M., Schneider, P. C., Czesla, S. & Schmitt, J. H. M. M. Energy-limited escape revised: the transition from strong planetary winds to stable thermospheres. Astron. Astrophys. 585, L2 (2016).
Lavie, B. et al. The long egress of GJ 436b’s giant exosphere. Astron. Astrophys. 605, L7 (2017).
Tremblin, P. & Chiang, E. Colliding planetary and stellar winds: charge exchange and transit spectroscopy in neutral hydrogen. Mon. Not. R. Astron. Soc. 428, 2565–2576 (2013).
Debrecht, A. et al. Effects of charge exchange on the evaporative wind of HD 209458b. Mon. Not. R. Astron. Soc. 517, 1724–1736 (2022).
Bourrier, V., Lecavelier des Etangs, A., Ehrenreich, D., Tanaka, Y. A. & Vidotto, A. A. An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b. Astron. Astrophys. 591, A121 (2016).
Villarreal D’Angelo, C., Vidotto, A. A., Esquivel, A., Hazra, G. & Youngblood, A. GJ 436b and the stellar wind interaction: simulations constraints using Ly α and H α transits. Mon. Not. R. Astron. Soc. 501, 4383–4395 (2021).
Mason, E. A. & Marrero, T. R. in Advances in Atomic and Molecular Physics Vol. 6 (eds Bates, D. R. & Esterman, I.) 155–232 (Elsevier, 1970).
Owen, J. E. & Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017).
Rogers, J. G. & Owen, J. E. Unveiling the planet population at birth. Mon. Not. R. Astron. Soc. 503, 1526–1542 (2021).
Valencia, D., Ikoma, M., Guillot, T. & Nettelmann, N. Composition and fate of short-period super-Earths: the case of CoRoT-7b. Astron. Astrophys. 516, A20 (2010).
Loyd, R. O. Parke. Hydrogen escaping from a pair of exoplanets smaller than Neptune: data analysis code. Zenodo https://doi.org/10.5281/zenodo.13976674 (2024).
Petigura, E. A. et al. The California-Kepler Survey. X. The radius gap as a function of stellar mass, metallicity, and age. Astron. J. 163, 179 (2022).
Gaia Collaboration et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).
Gaia Collaboration et al. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
Woods, T. N. et al. Solar EUV Experiment (SEE): mission overview and first results. J. Geophys. Res. Space Phys. 110, A01312 (2005).
Youngblood, A. et al. Intrinsic Lyα profiles of high-velocity G, K, and M dwarfs. Astrophys. J. 926, 129 (2022).
Redfield, S. & Linsky, J. L. The structure of the local interstellar medium. IV. Dynamics, morphology, physical properties, and implications of cloud-cloud interactions. Astrophys. J. 673, 283–314 (2008).
Linsky, J. L. et al. What is the total deuterium abundance in the local galactic disk? Astrophys. J. 647, 1106–1124 (2006).