Thursday, September 11, 2025
No menu items!
HomeNatureHuman gastroids to model regional patterning in early stomach development

Human gastroids to model regional patterning in early stomach development

  • Willet, S. G. & Mills, J. C. Stomach organ and cell lineage differentiation: from embryogenesis to adult homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2, 546–559 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zorn, A. M. & Wells, J. M. Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25, 221–251 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kim, B. M., Buchner, G., Miletich, I., Sharpe, P. T. & Shivdasani, R. A. The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. Dev. Cell 8, 611–622 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Listyorini, D. & Yasugi, S. Expression and function of Wnt5a in the development of the glandular stomach in the chicken embryo. Dev. Growth Differ. 48, 243–252 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling. Genes Dev. 22, 3050–3063 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Takamoto, N. et al. COUP-TFII is essential for radial and anteroposterior patterning of the stomach. Development 132, 2179–2189 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim, B. M. et al. Independent functions and mechanisms for homeobox gene Barx1 in patterning mouse stomach and spleen. Development 134, 3603–3613 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • McCracken, K. W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McCracken, K. W. et al. Wnt/beta-catenin promotes gastric fundus specification in mice and humans. Nature 541, 182–187 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Eicher, A. K. et al. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell 29, 36–51 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, H. T. & Hiiragi, T. Symmetry breaking in the mammalian embryo. Annu. Rev. Cell Dev. Biol. 34, 405–426 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shao, Y. & Fu, J. P. Engineering multiscale structural orders for high-fidelity embryoids and organoids. Cell Stem Cell 29, 722–743 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McGrath, P. S. & Wells, J. M. SnapShot: GI tract development. Cell 161, 176–176 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mittal, R. et al. Organ-on-chip models: Implications in drug discovery and clinical applications. J. Cell. Physiol. 234, 8352–8380 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hirami, Y. et al. Safety and stable survival of stem-cell-derived retinal organoid for 2 years in patients with retinitis pigmentosa. Cell Stem Cell 30, 1585–1596 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Karzbrun, E. et al. Human neural tube morphogenesis in vitro by geometric constraints. Nature 599, 268–272 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Libby, A. R. G. et al. Axial elongation of caudalized human organoids mimics aspects of neural tube development. Development 148, dev198275 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin, F. et al. Mechanically enhanced biogenesis of gut spheroids with instability-driven morphomechanics. Nat. Commun. 14, 6016 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Reubinoff, B. E. et al. Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19, 1134–1140 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wells, M. F. et al. Natural variation in gene expression and viral susceptibility revealed by neural progenitor cell villages. Cell Stem Cell 30, 312–332 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee, G. et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat. Biotechnol. 25, 1468–1475 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lignell, A., Kerosuo, L., Streichan, S. J., Cai, L. & Bronner, M. E. Identification of a neural crest stem cell niche by spatial genomic analysis. Nat. Commun. 8, 1830 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, L. Z., Song, W. L. & Chen, Y. G. Mesenchymal-epithelial interaction regulates gastrointestinal tract development in mouse embryos. Cell Rep. 40, 111053 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu, Q. et al. Charting human development using a multi-endodermal organ atlas and organoid models. Cell 184, 3281–3298 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Beumer, J. et al. High-resolution mRNA and secretome atlas of human enteroendocrine cells. Cell 181, 1291–1306 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lan, X. et al. PCGF6 controls neuroectoderm specification of human pluripotent stem cells by activating SOX2 expression. Nat. Commun. 13, 4601 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, D. D. et al. Purification and characterization of human neural stem and progenitor cells. Cell 186, 1179–1194 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nagy, N. & Goldstein, A. M. Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin. Cell Dev. Biol. 66, 94–106 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, M. et al. Generating trunk neural crest from human pluripotent stem cells. Sci. Rep. 6, 19727 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mohlin, S. et al. Maintaining multipotent trunk neural crest stem cells as self-renewing crestospheres. Dev. Biol. 447, 137–146 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhai, J. L. et al. Primate gastrulation and early organogenesis at single-cell resolution. Nature 612, 732–738 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367, 405–411 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gao, S. et al. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing. Nat. Cell Biol. 20, 721–734 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim, J.-E. et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat. Commun. 11, 334 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shao, X. H. et al. MatrisomeDB 2.0: 2023 updates to the ECM-protein knowledge database. Nucleic Acids Res. 51, D1519–D1530 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Müller, M., Jabs, N., Lorke, D. E., Fritzsch, B. & Sander, M. Nkx6.1 controls migration and axon pathfinding of cranial branchio-motoneurons. Development 130, 5815–5826 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Gou, Y., Guo, J., Maulding, K. & Riley, B. B. sox2 and sox3 cooperate to regulate otic/epibranchial placode induction in zebrafish. Dev. Biol. 435, 84–95 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, H. et al. The E3 ubiquitin ligase RNF220 maintains hindbrain Hox expression patterns through regulation of WDR5 stability. eLife 13, RP94657 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, B. et al. The single-cell and spatial transcriptional landscape of human gastrulation and brain. Cell Stem Cell 30, 851–866 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xue, X. et al. A patterned human neural tube model using microfluidic gradients. Nature 628, 391–399 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tyser, R. C. V. et al. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 600, 285–289 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Han, L. et al. Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nat. Commun. 11, 4158 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Smith, R. J. et al. Epigenetic control of cellular crosstalk defines gastrointestinal organ fate and function. Nat. Commun. 14, 497 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zacchetti, G., Duboule, D. & Zakany, J. Hox gene function in vertebrate gut morphogenesis: the case of the caecum. Development 134, 3967–3973 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pitera, J. E., Smith, V. V., Thorogood, P. & Milla, P. J. Coordinated expression of 3′ Hox genes during murine embryonal gut development: an enteric Hox code. Gastroenterology 117, 1339–1351 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yahagi, N. et al. Position-specific expression of Hox genes along the gastrointestinal tract. Congenit. anom. 44, 18–26 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Grapin-Botton, A. & Melton, D. A. Endoderm development: from patterning to organogenesis. Trends Genet. 16, 124–130 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nielsen, C., Murtaugh, L. C., Chyung, J. C., Lassar, A. & Roberts, D. J. Gizzard formation and the role of Bapx1. Dev. Biol. 231, 164–174 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Okamura, M. et al. COUP-TFII acts downstream of Wnt/β-catenin signal to silence PPARγ gene expression and repress adipogenesis. Proc. Natl Acad. Sci. USA 106, 5819–5824 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fujimura, N., Taketo, M. M., Mori, M., Korinek, V. & Kozmik, Z. Spatial and temporal regulation of Wnt/β-catenin signaling is essential for development of the retinal pigment epithelium. Dev. Biol. 334, 31–45 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Broda, T. R., McCracken, K. W. & Wells, J. M. Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nat. Protoc. 14, 28–50 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zheng, Y. et al. Dorsal-ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche. Sci. Adv. 5, eaax5933 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Hypoxia-responsive lncRNA AC115619 encodes and hepatocellular carcinoma progression. Cancer Res. 83, 2496–2512 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Maynard, K. R. et al. dotdotdot: an automated approach to quantify multiplex single molecule fluorescent in situ hybridization (smFISH) images in complex tissues. Nucleic Acids Res. 48, e66 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhu, L. N. et al. Single-cell sequencing of peripheral mononuclear cells reveals distinct immune response landscapes of COVID-19 and influenza patients. Immunity 53, 685–696 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360, eaar3131 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickam, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • van de Sande, B. et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat. Protoc. 15, 2247–2276 (2020).

  • Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Timme, N. M. & Lapish, C. A tutorial for information theory in neuroscience. eNeuro 5, ENEURO.0052-18.2018 (2018).

  • RELATED ARTICLES

    Most Popular

    Recent Comments