Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1080 (1997).
Zhang, Y., Wallace, J. M. & Battisti, D. S. ENSO-like interdecadal variability: 1900–93. J. Clim. 10, 1004–1020 (1997).
Newman, M. et al. The Pacific decadal oscillation, revisited. J. Clim. 29, 4399–4427 (2016).
Latif, M. & Barnett, T. P. Causes of decadal climate variability over the North Pacific and North America. Science 266, 634–637 (1994).
Eyring, V. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.) 423–552 (Cambridge Univ. Press, 2021).
Meehl, G. A., Hu, A. & Teng, H. Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nat. Commun. 7, 11718 (2016).
Trenberth, K. E. & Fasullo, J. T. An apparent hiatus in global warming? Earths Future 1, 19–32 (2013).
McCabe, G. J., Palecki, M. A. & Betancourt, J. L. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl Acad. Sci. USA 101, 4136–4141 (2004).
Borchert, L. F. et al. Skillful decadal prediction of unforced southern European summer temperature variations. Environ. Res. Lett. 16, 104017 (2021).
Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).
Klavans, J. M., Cane, M. A., Clement, A. C. & Murphy, L. N. NAO predictability from external forcing in the late 20th century. npj Clim. Atmos. Sci. 4, 22 (2021).
Menary, M. B. et al. Aerosol-forced AMOC changes in CMIP6 historical simulations. Geophys. Res. Lett. 47, e2020GL088166 (2020).
He, C. et al. Tropical Atlantic multidecadal variability is dominated by external forcing. Nature 622, 521–527 (2023).
Zhang, R. et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys. 57, 316–375 (2019).
Wang, T., Otterå, O. H., Gao, Y. & Wang, H. The response of the North Pacific decadal variability to strong tropical volcanic eruptions. Clim. Dyn. 39, 2917–2936 (2012).
Yeh, S.-W. et al. Changes in the variability of the North Pacific sea surface temperature caused by direct sulfate aerosol forcing in China in a coupled general circulation model. J. Geophys. Res. Atmos. 118, 1261–1270 (2013).
Boo, K.-O. et al. Influence of aerosols in multidecadal SST variability simulations over the North Pacific. J. Geophys. Res. Atmos. 120, 517–531 (2015).
Diao, C., Xu, Y. & Xie, S.-P. Anthropogenic aerosol effects on tropospheric circulation and sea surface temperature (1980-2020): separating the role of zonally asymmetric forcings. Atmos. Chem. Phys. 21, 18499–18518 (2021).
Smith, D. M. et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Clim. Change 6, 936–940 (2016).
Dittus, A. J., Hawkins, E., Robson, J., Smith, D. M. & Wilcox, L. J. Drivers of recent North Pacific decadal variability: the role of aerosol forcing. Earths Future 9, e2021EF002249 (2021).
Liguori, G., McGregor, S., Arblaster, J. M., Singh, M. S. & Meehl, G. A. A joint role for forced and internally-driven variability in the decadal modulation of global warming. Nat. Commun. 11, 3827 (2020).
Henley, B. J. et al. Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation. Environ. Res. Lett. 12, 044011 (2017).
Mann, M. E., Steinman, B. A. & Miller, S. K. Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nat. Commun. 11, 49 (2020).
Zhao, Y., Newman, M., Capotondi, A., Lorenzo, E. D. & Sun, D. Removing the effects of tropical dynamics from North Pacific climate variability. J. Clim. 34, 9249–9265 (2021).
Heede, U. K. & Fedorov, A. V. Colder Eastern Equatorial Pacific and Stronger Walker Circulation in the early 21st century: separating the forced response to global warming from natural variability. Geophys. Res. Lett. 50, e2022GL101020 (2023).
Solomon, A. & Newman, M. Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat. Clim. Change 2, 691–699 (2012).
Bonfils, C. & Santer, B. D. Investigating the possibility of a human component in various Pacific decadal oscillation indices. Clim. Dyn. 37, 1457–1468 (2011).
Scaife, A. A. & Smith, D. A signal-to-noise paradox in climate science. npj Clim. Atmos. Sci. 1, 28 (2018).
Eade, R. et al. Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett. 41, 5620–5628 (2014).
Waite, A. J. et al. Observational and model evidence for an important role for volcanic forcing driving Atlantic multidecadal variability over the last 600 years. Geophys. Res. Lett. 47, e2020GL089428 (2020).
Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).
Frankignoul, C., Sennéchael, N., Kwon, Y.-O. & Alexander, M. A. Influence of the meridional shifts of the Kuroshio and the Oyashio extensions on the atmospheric circulation. J. Clim. 24, 762–777 (2011).
Anderson, B. T. Empirical evidence linking the Pacific decadal precession to Kuroshio extension variability. J. Geophys. Res. Atmos. 124, 12845–12863 (2019).
Di Lorenzo, E. et al. Modes and mechanisms of Pacific decadal-scale variability. Annu. Rev. Marine Sci. 15, 249–275 (2023).
Fenske, T. & Clement, A. No internal connections detected between low frequency climate modes in North Atlantic and North Pacific basins. Geophys. Res. Lett. 49, e2022GL097957 (2022).
Broccoli, A. J., Lau, N.-C. & Nath, M. J. The cold ocean-warm land pattern: model simulation and relevance to climate change detection. J. Clim. 11, 2743–2763 (1998).
Laguë, M. M., Quetin, G. R. & Boos, W. R. Downwind control of oceanic air by land: the land wake and its sensitivity to CO2. Environ. Res. Lett. 17, 104045 (2022).
Kwon, Y.-O. & Deser, C. North Pacific decadal variability in the Community Climate System Model version 2. J. Clim. 20, 2416–2433 (2007).
Smirnov, D., Newman, M., Alexander, M. A., Kwon, Y.-O. & Frankignoul, C. Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Clim. 28, 1126–1147 (2015).
Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).
Maher, N. et al. The future of the El Niño–Southern Oscillation: using large ensembles to illuminate time-varying responses and inter-model differences. Earth Syst. Dyn. 14, 413–431 (2023).
Clement, A. C., Seager, R., Cane, M. A. & Zebiak, S. E. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996).
Lehner, F., Deser, C., Simpson, I. R. & Terray, L. Attributing the U.S. Southwest’s recent shift into drier conditions. Geophys. Res. Lett. 45, 6251–6261 (2018).
Seager, R. & Ting, M. Decadal drought variability over North America: mechanisms and predictability. Curr. Clim. Change Rep. 3, 141–149 (2017).
McCabe, G. J. & Dettinger, M. D. Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int. J. Climatol. 19, 1399–1410 (1999).
Scaife, A. A. et al. Does increased atmospheric resolution improve seasonal climate predictions? Atmos. Sci. Lett. 20, e922 (2019).
Hardiman, S. C. et al. Missing eddy feedback may explain weak signal-to-noise ratios in climate predictions. npj Clim. Atmos. Sci. 5, 57 (2022).
Siqueira, L. & Kirtman, B. P. Atlantic near-term climate variability and the role of a resolved Gulf Stream. Geophys. Res. Lett. 43, 3964–3972 (2016).
Zhang, W., Kirtman, B., Siqueira, L., Clement, A. & Xia, J. Understanding the signal-to-noise paradox in decadal climate predictability from CMIP5 and an eddying global coupled model. Clim. Dyn. 56, 2895–2913 (2021).
Murphy, L. N., Klavans, J. M., Clement, A. C. & Cane, M. A. Investigating the roles of external forcing and ocean circulation on the Atlantic multidecadal SST variability in a large ensemble climate model hierarchy. J. Clim. 34, 4835–4849 (2021).
Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).
Jeffrey, S. et al. Australia’s CMIP5 submission using the CSIRO-Mk3.6 model. Aust. Meteor. Oceanogr. J. 63, 1–13 (2013).
Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences 12, 3301–3320 (2015).
Kirchmeier-Young, M. C., Zwiers, F. W. & Gillett, N. P. Attribution of extreme events in Arctic sea ice extent. J. Clim. 30, 553–571 (2017).
Sun, L., Alexander, M. & Deser, C. Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Clim. 31, 7823–7843 (2018).
Maher, N. et al. The Max Planck Institute Grand Ensemble: enabling the exploration of climate system variability. J. Adv. Model. Earth Syst. 11, 2050–2069 (2019).
Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).
Delworth, T. L. et al. SPEAR: the next generation GFDL modeling system for seasonal to multidecadal prediction and projection. J. Adv. Model. Earth Syst. 12, e2019MS001895 (2020).
Bonnet, R. et al. Presentation and evaluation of the IPSL-CM6A-LR ensemble of extended historical simulations. J. Adv. Model.Earth Syst. 13, e2021MS002565 (2021).
Tatebe, H. et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).
Fyfe, J. C., Kharin, V. V., Santer, B. D., Cole, J. N. S. & Gillett, N. P. Significant impact of forcing uncertainty in a large ensemble of climate model simulations. Proc. Natl Acad. Sci. USA 118, e2016549118 (2021).
Ziehn, T. et al. The Australian Earth system model: ACCESS-ESM1.5. J. S. Hemi. Earth Syst. Sci. 70, 193–214 (2020).
Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2014).
Gillett, N. P. et al. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev. 9, 3685–3697 (2016).
Schneider, U. et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 115, 15–40 (2014).
Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).
Huang, B. et al. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).
Mantua, N. J. & Hare, S. R. The Pacific decadal oscillation. J. Oceanogr. 58, 35–44 (2002).
Trenberth, K. E. & Hurrell, J. W. Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn. 9, 303–319 (1994).
Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 10, 2147–2153 (1997).
MATLAB. Signal Processing Toolbox (MathWorks, 2023).
Moron V. WEACLIM. https://www.mathworks.com/matlabcentral/fileexchange/10881-weaclim. (MATLAB Central File Exchange, 2025).
Klavans, J. M. jeklavans/PDO_2024: human emissions drive recent trends in North Pacific climate variations (v1.0). Zenodo https://doi.org/10.5281/zenodo.15658555 (2025).