Rubinstein, S. M., Cohen, G. & Fineberg, J. Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004).
Xia, K., Rosakis, A. J. & Kanamori, H. Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004).
Passelègue, F. X. et al. Initial effective stress controls the nature of earthquakes. Nat. Commun. 11, 5132 (2020).
Schubnel, A., Nielsen, S., Taddeucci, J., Vinciguerra, S. & Rao, S. Photo-acoustic study of subshear and supershear ruptures in the laboratory. Earth Planet. Sci. Lett. 308, 424–432 (2011).
Svetlizky, I. & Fineberg, J. Classical shear cracks drive the onset of dry frictional motion. Nature 509, 205–208 (2014).
Wu, B. S. & McLaskey, G. C. Contained laboratory earthquakes ranging from slow to fast. J. Geophys. Res. Solid Earth 124, 10270–10291 (2019).
Xu, S., Fukuyama, E. & Yamashita, F. Robust estimation of rupture properties at propagating front of laboratory earthquakes. J. Geophys. Res. Solid Earth 124, 766–787 (2019).
Byerlee, J. D. & Brace, W. F. Stick slip, stable sliding, and earthquakes-effect of rock type, pressure, strain rate, and stiffness. J. Geophys. Res. 73, 6031–6037 (1968).
Scholz, C. H. The Mechanics of Earthquakes and Faulting 3rd edn (Cambridge Univ. Press, 2019).
Ohnaka, M. & Shen, L.-F. Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surfaces. J. Geophys. Res. Solid Earth 104, 817–844 (1999).
Latour, S., Schubnel, A., Nielsen, S., Madariaga, R. & Vinciguerra, S. Characterization of nucleation during laboratory earthquakes. Geophys. Res. Lett. 40, 5064–5069 (2013).
Dresen, G., Kwiatek, G., Goebel, T. & Ben-Zion, Y. Seismic and aseismic preparatory processes before large stick-slip failure. Pure Appl. Geophys. 177, 5741–5760 (2020).
Popov, V. L., Grzemba, B., Starcevic, J. & Fabry, C. Accelerated creep as a precursor of friction instability and earthquake prediction. Phys. Mesomech. 13, 283–291 (2010).
Lapusta, N. & Rice, J. R. Nucleation and early seismic propagation of small and large events in a crustal earthquake model. J. Geophys. Res. Solid Earth 108, 2205 (2003).
Uenishi, K. & Rice, J. R. Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. J. Geophys. Res. Solid Earth 108, 2042 (2003).
Hulbert, C. et al. Similarity of fast and slow earthquakes illuminated by machine learning. Nat. Geosci. 12, 69–74 (2019).
Leeman, J. R., Marone, C. & Saffer, D. M. Frictional mechanics of slow earthquakes. J. Geophys. Res. Solid Earth 123, 7931–7949 (2018).
Gvirtzman, S. & Fineberg, J. Nucleation fronts ignite the interface rupture that initiates frictional motion. Nat. Phys. 17, 1037–1042 (2021).
Gvirtzman, S. & Fineberg, J. The initiation of frictional motion–the nucleation dynamics of frictional ruptures. J. Geophys. Res. Solid Earth 128, e2022JB025483 (2023).
Weng, H. & Ampuero, J.-P. The dynamics of elongated earthquake ruptures. J. Geophys. Res. Solid Earth 124, 8584–8610 (2019).
Weng, H. & Ampuero, J.-P. Integrated rupture mechanics for slow slip events and earthquakes. Nat. Commun. 13, 7327 (2022).
Freund, L. B. Dynamic Fracture Mechanics (Cambridge Univ. Press, 1998).
Broberg, K. B. Cracks and Fracture (Academic Press, 1999).
Palmer, A. C. & Rice, J. R. The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. Lond. A 332, 527–548 (1973).
Barras, F. et al. Emergence of cracklike behavior of frictional rupture: The origin of stress drops. Phys. Rev. X 9, 041043 (2019).
Barras, F. et al. The emergence of crack-like behavior of frictional rupture: Edge singularity and energy balance. Earth Planet. Sci. Lett. 531, 115978 (2020).
Kostrov, B. Selfsimilar problems of propagation of shear cracks. J. Appl. Math Mech. 28, 1077–1087 (1964).
Kanamori, H. & Brodsky, E. E. The physics of earthquakes. Rep. Prog. Phys. 67, 1429–1498 (2004).
Viesca, R. C. & Garagash, D. I. Ubiquitous weakening of faults due to thermal pressurization. Nat. Geosci. 8, 875–879 (2015).
Mello, M., Bhat, H. S. & Rosakis, A. J. Spatiotemporal properties of Sub-Rayleigh and supershear rupture velocity fields: Theory and experiments. J. Mech. Phys. Solids 93, 153–181 (2016).
Svetlizky, I., Kammer, D. S., Bayart, E., Cohen, G. & Fineberg, J. Brittle fracture theory predicts the equation of motion of frictional rupture fronts. Phys. Rev. Lett. 118, 125501 (2017).
Kammer, D. S., Svetlizky, I., Cohen, G. & Fineberg, J. The equation of motion for supershear frictional rupture fronts. Sci. Adv. 4, eaat5622 (2018).
Bayart, E., Svetlizky, I. & Fineberg, J. Fracture mechanics determine the lengths of interface ruptures that mediate frictional motion. Nat. Phys. 12, 166–170 (2016).
Bayart, E., Svetlizky, I. & Fineberg, J. Rupture dynamics of heterogeneous frictional interfaces. J. Geophys. Res. Solid Earth 123, 3828–3848 (2018).
Paglialunga, F., Passelègue, F., Lebihain, M. & Violay, M. Frictional weakening leads to unconventional singularities during dynamic rupture propagation. Earth Planet. Sci. Lett. 626, 118550 (2024).
Brener, E. A. & Bouchbinder, E. Unconventional singularities and energy balance in frictional rupture. Nat. Commun. 12, 2585 (2021).
Ben-David, O., Cohen, G. & Fineberg, J. The dynamics of the onset of frictional slip. Science 330, 211–214 (2010).
Gori, M., Rubino, V., Rosakis, A. J. & Lapusta, N. Dynamic rupture initiation and propagation in a fluid-injection laboratory setup with diagnostics across multiple temporal scales. Proc. Natl Acad. Sci. USA 118, e2023433118 (2021).
Marone, C. in The Spectrum of Fault Slip Modes from Elastodynamic Rupture to Slow Earthquakes (eds Bizzarri, A. et al.) Mechanics of Earthquake Faulting, Vol. 202, 81–94 (IOS Press, 2019).
Guérin-Marthe, S., Nielsen, S., Bird, R., Giani, S. & Di Toro, G. Earthquake nucleation size: evidence of loading rate dependence in laboratory faults. J. Geophys. Res. Solid Earth 124, 689–708 (2019).
Fukuyama, E. et al. Spatiotemporal complexity of 2-D rupture nucleation process observed by direct monitoring during large-scale biaxial rock friction experiments. Tectonophysics 733, 182–192 (2018).
McLaskey, G. C. Earthquake initiation from laboratory observations and implications for foreshocks. J. Geophys. Res. Solid Earth 124, 12882–12904 (2019).
Cebry, S. B. L. & McLaskey, G. C. Seismic swarms produced by rapid fluid injection into a low permeability laboratory fault. Earth Planet. Sci. Lett. 557, 116726 (2021).
Dieterich, J. H. Earthquake Nucleation on Faults with Rate-Dependent and State-Dependent Strength. Tectonophysics 211, 115–134 (1992).
Ray, S. & Viesca, R. C. Earthquake nucleation on faults with heterogeneous frictional properties, normal stress. J. Geophys. Res. Solid Earth 122, 8214–8240 (2017).
Rubin, A. M. & Ampuero, J.-P. Earthquake nucleation on (aging) rate and state faults. J. Geophys. Res. Solid Earth 110, B11312 (2005).
Castellano, M., Lorez, F. & Kammer, D. S. Nucleation of frictional slip: a yielding or a fracture process? J. Mech. Phys. Solids 173, 105193 (2023).
Chen, T. & Lapusta, N. On behaviour and scaling of small repeating earthquakes in rate and state fault models. Geophys. J. Int. 218, 2001–2018 (2019).
Dal Zilio, L., Lapusta, N. & Avouac, J.-P. Unraveling scaling properties of slow-slip events. Geophys. Res. Lett. 47, e2020GL087477 (2020).
Goldman, T., Livne, A. & Fineberg, J. Acquisition of inertia by a moving crack. Phys. Rev. Lett. 104, 114301 (2010).
Wang, M., Adda-Bedia, M., Kolinski, J. M. & Fineberg, J. How hidden 3d structure within crack fronts reveals energy balance. J. Mech. Phys. Solids 161, 104795 (2022).
Vasudevan, A. et al. Adaptation of the tapered double cantilever beam test for the measurement of fracture energy and its variations with crack speed. Preprint at https://doi.org/10.48550/arXiv.2101.04380 (2021).
Scheibert, J., Guerra, C., Célarié, F., Dalmas, D. & Bonamy, D. Brittle-quasibrittle transition in dynamic fracture: an energetic signature. Phys. Rev. Lett. 104, 045501 (2010).
Liu, Y. & Rice, J. R. Spontaneous and triggered aseismic deformation transients in a subduction fault model. J. Geophys. Res. Solid Earth 112, B09404 (2007).
Galis, M. et al. On the initiation of sustained slip-weakening ruptures by localized stresses. Geophys. J. Int. 200, 890–909 (2014).
Liu, C. et al. Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye. Nat. Commun. 14, 5564 (2023).
Chen, K. et al. Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California shear zone. Nat. Commun. 11, 22 (2020).