IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).
Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).
Berenguer, E. et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl Acad. Sci. USA 118, e2019377118 (2021).
Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).
McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).
Lapola, D. M. et al. The drivers and impacts of Amazon forest degradation. Science 379, eabp8622 (2023).
Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).
Brando, P. M. et al. Tipping points of Amazonian forests: beyond myths and toward solutions. Annu. Rev. Environ. Resour. 50, 97–131 (2025).
Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).
Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).
Aguirre-Gutiérrez, J. et al. Functional susceptibility of tropical forests to climate change. Nat. Ecol. Evol. 6, 878–889 (2022).
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Chen, S. et al. Amazon forest biogeography predicts resilience and vulnerability to drought. Nature 631, 111–117 (2024).
Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl Acad. Sci. USA 102, 15144–15148 (2005).
Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, art129 (2015).
Fontes, C. G. et al. Dry and hot: the hydraulic consequences of a climate change-type drought for Amazonian trees. Phil. Trans. R. Soc. B 373, 20180209 (2018).
Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).
Higuchi, N. et al. BIONTE: Biomassa e Nutrientes Florestais (Instituto Nacional de Pesquisas da Amazônia, 1997).
Amaral, M., Lima, A., Higuchi, F., dos Santos, J. & Higuchi, N. Dynamics of tropical forest twenty-five years after experimental logging in central Amazon mature forest. Forests 10, 89 (2019).
Gaui, T. D. et al. Long-term effect of selective logging on floristic composition: a 25 year experiment in the Brazilian Amazon. For. Ecol. Manag. 440, 258–266 (2019).
Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422 (2020).
Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).
McKee, T. B., Doesken, N. J. & Kleist, J. The relationship of drought frequency and duration to time scales. In Proc. 8th Conference on Applied Climatology 179–183 (American Meteorological Society, 1993).
Liu, S., McVicar, T. R., Wu, X., Cao, X. & Liu, Y. Assessing the relative importance of dry-season incoming solar radiation and water storage dynamics during the 2005, 2010 and 2015 southern Amazon droughts: not all droughts are created equal. Environ. Res. Lett. 19, 034027 (2024).
Liu, Y. Y., van Dijk, A. I. J. M., Meir, P. & McVicar, T. R. Drought and radiation explain fluctuations in Amazon rainforest greenness during the 2015–2016 drought. Biogeosciences 21, 2273–2295 (2024).
Yanoviak, S. P. et al. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).
Feng, Y., Negrón-Juárez, R. I., Romps, D. M. & Chambers, J. Q. Amazon windthrow disturbances are likely to increase with storm frequency under global warming. Nat. Commun. 14, 101 (2023).
Schumacher, R. S. & Rasmussen, K. L. The formation, character and changing nature of mesoscale convective systems. Nat. Rev. Earth Environ. 1, 300–314 (2020).
Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388 (2019).
Chao, K.-J. et al. Growth and wood density predict tree mortality in Amazon forests. J. Ecol. 96, 281–292 (2008).
Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C. & Davies, S. J. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98, 2538–2546 (2017).
Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).
Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).
Negrón-Juárez, R. et al. Calibration, measurement, and characterization of soil moisture dynamics in a central Amazonian tropical forest. Vadose Zone J. 19, e20070 (2020).
Gimenez, B. O. et al. Species-specific shifts in diurnal sap velocity dynamics and hysteretic behavior of ecophysiological variables during the 2015–2016 El Niño event in the Amazon forest. Front. Plant Sci. 10, 830 (2019).
Meng, L. et al. Soil moisture thresholds explain a shift from light-limited to water-limited sap velocity in the central Amazon during the 2015–16 El Niño drought. Environ. Res. Lett. 17, 064023 (2022).
Burnett, M. W., Quetin, G. R. & Konings, A. G. Data-driven estimates of evapotranspiration and its controls in the Congo Basin. Hydrol. Earth Syst. Sci. 24, 4189–4211 (2020).
Tomasella, J., Hodnett, M. G. & Rossato, L. Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Soil Sci. Soc. Am. J. 64, 327–338 (2000).
Tavares, J. V. et al. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 617, 111–117 (2023).
Garcia, M. N. et al. Importance of hydraulic strategy trade-offs in structuring response of canopy trees to extreme drought in central Amazon. Oecologia 197, 13–24 (2021).
Pivovaroff, A. L. et al. Hydraulic architecture explains species moisture dependency but not mortality rates across a tropical rainfall gradient. Biotropica 53, 1213–1225 (2021).
Wang, Y.-Q. et al. Hydraulic determinants of drought-induced tree mortality and changes in tree abundance between two tropical forests with different water availability. Agric. For. Meteorol. 331, 109329 (2023).
Clymo, R. S. & Whittaker, R. H. Communities and ecosystems. J. Ecol. 58, 897 (1970).
Danabasoglu, G. et al. The community earth system model version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2020JD032521 (2020).
Burrows, S. M. et al. The DOE E3SM v1.1 biogeochemistry configuration: description and simulated ecosystem-climate responses to historical changes in forcing. J. Adv. Model. Earth Syst. 12, e2019MS001766 (2020).
Harrop, B. E. et al. Diurnal rainfall response to the physiological and radiative effects of CO2 in tropical forests in the energy exascale earth system model v1. J. Geophys. Res. Atmospheres 127, e2021JD036148 (2022).
Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).
Longo, M. et al. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytol. 219, 914–931 (2018).
Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).
Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).
Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).
Heinrich, V. H. A. et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 12, 1785 (2021).
Elias, F. et al. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology 101, e02954 (2020).
Reid, J. W. & Lovejoy, T. E. Ever Green: Saving Big Forests to Save the Planet (WW Norton & Company, 2022).
Chambers, J. Q. et al. Response of tree biomass and wood litter to disturbance in a Central Amazon forest. Oecologia 141, 596–611 (2004).
Koven, C. D. et al. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the functionally assembled terrestrial ecosystem simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17, 3017–3044 (2020).
Liu, J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358, eaam5690 (2017).
Raupach, M. R. et al. The declining uptake rate of atmospheric CO2 by land and ocean sinks. Biogeosciences 11, 3453–3475 (2014).
Aragão, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).
Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Phil. Trans. R. Soc. B 368, 20120427 (2013).
O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 673–816 (Cambridge Univ. Press, 2021).
Koven, C. D. et al. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth system models. Biogeosciences 12, 5211–5228 (2015).
Yin, D., Roderick, M. L., Leech, G., Sun, F. & Huang, Y. The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys. Res. Lett. 41, 7891–7897 (2014).
Negron-Juarez, R. et al. Windthrow characteristics and their regional association with rainfall, soil, and surface elevation in the Amazon. Environ. Res. Lett. 18, 014030 (2023).
Garstang, M., White, S., Shugart, H. H. & Halverson, J. Convective cloud downdrafts as the cause of large blowdowns in the Amazon rainforest. Meteorol. Atmospheric Phys. 67, 199–212 (1998).
Araujo, R. F. et al. Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: results from 5 years of monthly drone data for a 50 ha plot. Biogeosciences 18, 6517–6531 (2021).
Gora, E. M., Bitzer, P. M., Burchfield, J. C., Gutierrez, C. & Yanoviak, S. P. The contributions of lightning to biomass turnover, gap formation and plant mortality in a tropical forest. Ecology 102, e03541 (2021).
Nelson, B. W., Kapos, V., Adams, J. B., Oliveira, W. J. & Braun, O. P. G. Forest disturbance by large blowdowns in the Brazilian Amazon. Ecology 75, 853–858 (1994).
Negrón-Juárez, R. I. et al. Vulnerability of Amazon forests to storm-driven tree mortality. Environ. Res. Lett. 13, 054021 (2018).
Chambers, J. Q. et al. The steady-state mosaic of disturbance and succession across an old-growth central Amazon forest landscape. Proc. Natl Acad. Sci. USA 110, 3949–3954 (2013).
Fisher, R. A. & Koven, C. D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. 12, e2018MS001453 (2020).
Konings, A. G. et al. Active microwave observations of diurnal and seasonal variations of canopy water content across the humid African tropical forests. Geophys. Res. Lett. 44, 2290–2299 (2017).
Barros, F. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. New Phytol. 223, 1253–1266 (2019).
Binks, O. et al. Foliar water uptake in Amazonian trees: evidence and consequences. Glob. Change Biol. 25, 2678–2690 (2019).
Oliveira, R. S., Dawson, T. E., Burgess, S. S. O. & Nepstad, D. C. Hydraulic redistribution in three Amazonian trees. Oecologia 145, 354–363 (2005).
Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).
Marengo, J. A. et al. Long-term variability, extremes and changes in temperature and hydrometeorology in the Amazon region: a review. Acta Amaz. 54, e54es22098 (2024).
Espinoza, J.-C. et al. The new record of drought and warmth in the Amazon in 2023 related to regional and global climatic features. Sci. Rep. 14, 8107 (2024).
Dyer, L., Chambers, J., Pastorello, G. & Weber, A. Hot Droughts and Forest Tree Dynamics in the Amazon — Statistical Models, Scripts, Data, and Outputs (OSTI, 2025).
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).
Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, 16 (2013).
Pastorello, G. et al. Harmonized wood density data for central Amazon species. NGEE-Tropics data collection (dataset). ESS-Dive https://doi.org/10.15486/ngt/1898906 (2022).
Chave, J. et al. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol. Appl. 16, 2356–2367 (2006).
Lamour, J. et al. Wood-density has no effect on stomatal control of leaf-level water use efficiency in an Amazonian forest. Plant Cell Environ. 46, 3806–3821 (2023).
Sullivan, M. J. P. et al. Variation in wood density across South American tropical forests. Nat. Commun. 16, 2351 (2025).
Adams, J. Climate_indices, an open source Python library providing reference implementations of commonly used climate indices. GitHub https://github.com/monocongo/climate_indices (2023).
Pastorello, G. et al. Drought index using micrometeorological data from Embrapa Weather Station at Adolpho Ducke Reserve in Manaus, Brazil. NGEE-Tropics data collection (dataset). ESS-Dive https://doi.org/10.15486/ngt/1958257 (2023).
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. FAO Irrigation and Drainage Paper 56 (UN Food and Agriculture Organization, 1998).
Lima, A. J. N., Teixeira, L. M., Carneiro, V. M. C., dos Santos, J. & Higuchi, N. Biomass stock and structural analysis of a secondary forest in Manaus (AM) region, ten years after clear cutting followed by fire. Acta Amaz. 37, 49–53 (2007).
Araújo, A. C. et al. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site. J. Geophys. Res. Atmospheres 107, LBA-58 (2002).
Araujo, A. et al. Selected micrometeorological and soil data from the Manaus ZF2 K34 Eddy covariance tower for the 2015/16 El Niño event. NGEE-Tropics data collection. ESS-Dive https://doi.org/10.15486/ngt/1958362 (2023).
Burgess, S. S. O., Adams, M. A., Turner, N. C. & Ong, C. K. The redistribution of soil water by tree root systems. Oecologia 115, 306–311 (1998).
Christianson, D. S. et al. A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations. Ecol. Inform. 42, 148–158 (2017).
Marshall, D. C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 33, 385–396 (1958).
Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).
Dawson, T. E. et al. Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiol. 27, 561–575 (2007).
Steppe, K., De Pauw, D. J. W., Doody, T. M. & Teskey, R. O. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 150, 1046–1056 (2010).
Grossiord, C. et al. Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics. Oecologia 191, 519–530 (2019).
Rao, M. P. et al. Approaching a thermal tipping point in the Eurasian boreal forest at its southern margin. Commun. Earth Environ. 4, 247 (2023).
Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K. & Parazoo, N. C. Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 7, 877–887 (2021).
Leung, L. R., Bader, D. C., Taylor, M. A. & McCoy, R. B. An introduction to the E3SM special collection: goals, science drivers, development, and analysis. J. Adv. Model. Earth Syst. 12, e2019MS001821 (2020).
Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).
Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).
Lima, A. J. N. et al. Growth, mortality, wood density, biomass data from BIONTE inventories in Manaus, Brazil. NGEE-Tropics data collection (dataset). ESS-Dive https://doi.org/10.15486/ngt/1898910 (2022).
Meng, L., Koven, C., Pastorello, G. & Chambers, J. Forcing data (CESM2/CMIP6) for projection of drought impacts (2015–2100) at the K34 site in Manaus, Brazil. NGEE-Tropics data collection (dataset). ESS-Dive https://doi.org/10.15486/ngt/1923910 (2023).
Gimenez, B. et al. Sap velocity and leaf-level measurements in Manaus and Santarém-Brazil. NGEE-Tropics data collection. ESS-Dive https://doi.org/10.15486/ngt/1570380 (2021).

