Friday, January 10, 2025
No menu items!
HomeNatureHost metabolism balances microbial regulation of bile acid signalling

Host metabolism balances microbial regulation of bile acid signalling

  • Robertson, R. C., Manges, A. R., Finlay, B. B. & Prendergast, A. J. The human microbiome and child growth — first 1000 days and beyond. Trends Microbiol. 27, 131–147 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuchs, C. D. & Trauner, M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat. Rev. Gastroenterol. Hepatol. 19, 432–450 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678–693 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wahlstrom, A., Sayin, S. I., Marschall, H. U. & Backhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Blander, J. M., Longman, R. S., Iliev, I. D., Sonnenberg, G. F. & Artis, D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 18, 851–860 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hang, S. Y. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Morais, L. H., Schreiber, H. L. T. & Mazmanian, S. K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-00460-0 (2020).

  • Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nicholson, J. K. et al. Host–gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Martin, A. M., Sun, E. W., Rogers, G. B. & Keating, D. J. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Front. Physiol. 10, 428 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molinaro, A., Wahlstrom, A. & Marschall, H. U. Role of bile acids in metabolic control. Trends Endocrinol. Metab. 29, 31–41 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ramírez-Pérez, O., Cruz-Ramón, V., Chinchilla-López, P. & Méndez-Sánchez, N. The role of the gut microbiota in bile acid metabolism. Ann. Hepatol. 16, s15–s20 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Claudel, T., Staels, B. & Kuipers, F. The farnesoid X receptor — a molecular link between bile acid and lipid and glucose metabolism. Arterioscler. Thromb. Vasc. Biol. 25, 2020–2031 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, L., Zhang, H., Xiao, D., Wei, H. & Chen, Y. Farnesoid X receptor (FXR): structures and ligands. Comput. Struct. Biotechnol. J. 19, 2148–2159 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, M. R., Barnes, S., Kwakye, J. B. & Diasio, R. B. Purification and characterization of bile acid-CoA:amino acid N-acyltransferase from human liver. J. Biol. Chem. 266, 10227–10233 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Killenberg, P. G. & Jordan, J. T. Purification and characterization of bile acid-CoA:amino acid N-acyltransferase from rat liver. J. Biol. Chem. 253, 1005–1010 (1978).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Funabashi, M. et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582, 566–570 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • White, B. A., Lipsky, R. L., Fricke, R. J. & Hylemon, P. B. Bile acid induction specificity of 7α-dehydroxylase activity in an intestinal Eubacterium species. Steroids 35, 103–109 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, B. V., Begley, M., Hill, C., Gahan, C. G. & Marchesi, J. R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl Acad. Sci. USA 105, 13580–13585 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ridlon, J. M., Harris, S. C., Bhowmik, S., Kang, D. J. & Hylemon, P. B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7, 22–39 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandak, W. M. & Kakiyama, G. The acidic pathway of bile acid synthesis: not just an alternative pathway. Liver Res. 3, 88–98 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-β-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, L. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24, 1919–1929 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Reschly, E. J. et al. Evolution of the bile salt nuclear receptor FXR in vertebrates. J. Lipid Res. 49, 1577–1587 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chiang, J. Y. Bile acids: regulation of synthesis. J. Lipid Res. 50, 1955–1966 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Brandman, O. & Meyer, T. Feedback loops shape cellular signals in space and time. Science 322, 390–395 (2008).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tautenhahn, R., Patti, G. J., Rinehart, D. & Siuzdak, G. XCMS Online: a web-based platform to process untargeted metabolomic data. Anal. Chem. 84, 5035–5039 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helf, M. J., Fox, B. W., Artyukhin, A. B., Zhang, Y. K. & Schroeder, F. C. Comparative metabolomics with Metaboseek reveals functions of a conserved fat metabolism pathway in C. elegans. Nat. Commun. 13, 782 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arifuzzaman, M. et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature https://doi.org/10.1038/s41586-022-05380-y (2022).

  • Singh, V. et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 175, 679–694.e22 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Naquet, P., Kerr, E. W., Vickers, S. D. & Leonardi, R. Regulation of coenzyme A levels by degradation: the ‘ins and outs’. Prog. Lipid Res. 78, 101028 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunt, M. C., Siponen, M. I. & Alexson, S. E. The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism. Biochim. Biophys. Acta 1822, 1397–1410 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neugebauer, K. A. et al. BAAT gene knockout alters early life development and the gut microbiome and reveals unusual bile acids in mice. J. Lipid Res. 63, 100297 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartucci, R., Salvati, A., Olinga, P. & Boersma, Y. L. Vanin 1: its physiological function and role in diseases. Int. J. Mol. Sci. 20, 3891 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaskow, B. J., Proffitt, J. M., Blangero, J., Moses, E. K. & Abraham, L. J. Diverse biological activities of the vascular non-inflammatory molecules — the vanin pantetheinases. Biochem. Biophys. Res. Commun. 417, 653–658 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, H. et al. Vanin1 (VNN1) in chronic diseases: future directions for targeted therapy. Eur. J. Pharmacol. 962, 176220 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, L. et al. A selective gut bacterial bile salt hydrolase alters host metabolism. eLife https://doi.org/10.7554/eLife.37182 (2018).

  • Al-Dury, S., Wahlstrom, A., Stahlman, M., Backhed, F. & Marschall, H. U. Cyp3a11 is dispensable for the formation of murine bile acids. J. Hepatol. 64, S436 (2016).

    Article 

    Google Scholar
     

  • Guzior, D. V. et al. Bile salt hydrolase acyltransferase activity expands bile acid diversity. Nature https://doi.org/10.1038/s41586-024-07017-8 (2024).

  • Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Voegel, J. J., Heine, M. J., Zechel, C., Chambon, P. & Gronemeyer, H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15, 3667–3675 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willson, T. M., Jones, S. A., Moore, J. T. & Kliewer, S. A. Chemical genomics: functional analysis of orphan nuclear receptors in the regulation of bile acid metabolism. Med. Res. Rev. 21, 513–522 (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jiang, C. et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6, 10166 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2, 217–225 (2005).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kim, I. et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J. Lipid Res. 48, 2664–2672 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gonzalez, F. J., Jiang, C., Xie, C. & Patterson, A. D. Intestinal farnesoid X receptor signaling modulates metabolic disease. Dig. Dis. 35, 178–184 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Cheng, K. et al. Diminished gallbladder filling, increased fecal bile acids, and promotion of colon epithelial cell proliferation and neoplasia in fibroblast growth factor 15-deficient mice. Oncotarget 9, 25572–25585 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito, S. et al. Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J. Clin. Invest. 115, 2202–2208 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kuang, J. L. et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut–liver axis. Cell Metab. 35, 1752–1766.e8 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Song, X. Y. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Einarsson, C., Hillebrant, C. G. & Axelson, M. Effects of treatment with deoxycholic acid and chenodeoxycholic acid on the hepatic synthesis of cholesterol and bile acids in healthy subjects. Hepatology 33, 1189–1193 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Farnesoid X receptor agonists as therapeutic target for cardiometabolic diseases. Front. Pharmacol. 11, 1247 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ali, A. H., Carey, E. J. & Lindor, K. D. Recent advances in the development of farnesoid X receptor agonists. Ann. Transl. Med. 3, 5 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrell, J. M. & Chiang, J. Y. L. Understanding bile acid signaling in diabetes: from pathophysiology to therapeutic targets. Diabetes Metab. J. 43, 257–272 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, T. & Apte, U. Bile acid metabolism and signaling in cholestasis, inflammation, and cancer. Adv. Pharmacol. 74, 263–302 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mahanti, P. et al. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor, regulating C. elegans development and lifespan. Cell Metab. 19, 73–83 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pitari, G. et al. Pantetheinase activity of membrane-bound vanin-1: lack of free cysteamine in tissues of vanin-1 deficient mice. FEBS Lett. 483, 149–154 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Hepworth, M. R. et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 348, 1031–1035 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Letourneau, J. et al. Ecological memory of prior nutrient exposure in the human gut microbiome. ISME J. 16, 2479–2490 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Goc, J. et al. Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell 184, 5015–5030.e16 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tautenhahn, R., Bottcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9, 504 (2008).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, B. et al. Acylspermidines are conserved mitochondrial sirtuin-dependent metabolites. Nat. Chem. Biol. 20, 812–822 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parkhurst, C. Fiji oil red O macro. Zenodo https://doi.org/10.5281/zenodo.14031611 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments