Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).
Lee, S.-H. et al. Heterostructural tailoring of blue ZnSeTe quantum dots toward high-color purity and high-efficiency electroluminescence. Chem. Eng. J. 429, 132464 (2022).
Lee, Y. J. et al. Crystallographic and photophysical analysis on facet-controlled defect-free blue-emitting quantum dots. Adv. Mater. 36, 2311719 (2024).
Imran, M. et al. Molecular additive-assisted tellurium homogenization in ZnSeTe quantum dots. Adv. Mater. 35, 2303528 (2023).
Gao, M. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 21, 7252–7260 (2021).
Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).
Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).
Deng, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505–511 (2022).
Zhang, W. et al. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer. Nat. Commun. 15, 783 (2024).
Chen, X. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface–bulk coupling. Nat. Commun. 14, 284 (2023).
Han, C.-Y. et al. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices. ACS Energy Lett. 5, 1568–1576 (2020).
Bi, Y. et al. Reducing emission linewidth of pure-blue ZnSeTe quantum dots through shell engineering toward high color purity light-emitting diodes. Small 19, 2303247 (2023).
Jang, E. P. et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 11, 46062–46069 (2019).
Cho, S. et al. Air-stable and environmentally friendly full color-emitting ZnSeTe/ZnSe/ZnS quantum dots for display applications. ACS Appl. Nano Mater. 5, 18905–18911 (2022).
Chang, J. H. et al. Impact of morphological inhomogeneity on excitons states in highly mismatched alloy ZnSe1−xTex nanocrystals. J. Phys. Chem. Lett. 13, 11464–11472 (2022).
Cheng, C. et al. Near-unity quantum yield ZnSeTe quantum dots enabled by controlling shell growth for efficient deep-blue light-emitting diodes. Adv. Funct. Mater. 34, 2313811 (2024).
Smith, A. M., Mohs, A. M. & Nie, S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 4, 56–63 (2009).
Lin, Y. C. et al. Time-resolved photoluminescence of isoelectronic traps in ZnSe1−xTex semiconductor alloys. Appl. Phys. Lett. 93, 241909 (2008).
Sohn, S. H. & Hamakawa, Y. Binding energies of simple isoelectronic impurities in II–VI semiconductors. Phys. Rev. B 46, 9452–9460 (1992).
Cai, W. et al. Emission mechanism of bright and eco-friendly ZnSeTe quantum dots. Adv. Opt. Mater. 12, 2301970 (2023).
Zheng, Z. et al. Bromide decorated eco-friendly ZnSeTe/ZnSe/ZnS quantum dots for efficient blue light-emitting diodes. Adv. Mater. Interfaces 10, 2202241 (2022).
Neumark, G. F., Kuskovsky, I. L. & Jiang, H. Wide Bandgap Light Emitting Materials and Devices (Wiley, 2007).
Marcet, S., André, R. & Francoeur, S. Excitons bound to Te isoelectronic dyads in ZnSe. Phys. Rev. B 82, 235309 (2010).
Ruberu, T. P. A. et al. Molecular control of the nanoscale: effect of phosphine–chalcogenide reactivity on CdS–CdSe nanocrystal composition and morphology. ACS Nano 6, 5348–5359 (2012).
Park, S. H. et al. Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 108, 093518 (2010).
Kang, C. K. et al. Surface passivation by sulfur treatment of undoped p-CdTe (100). J. Appl. Phys. 88, 2013 (2000).
Wu, J. et al. Temperature-dependent recombination dynamics and electroluminescence characteristics of colloidal CdSe/ZnS core/shell quantum dots. Appl. Phys. Lett. 119, 073303 (2021).
Park, J., Won, Y.-H., Kim, T., Jang, E. & Kim, D. Electrochemical charging effect on the optical properties of InP/ZnSe/ZnS quantum dots. Small 16, 2003542 (2020).
Kalytchuk, S., Zhovtiuk, O., Kershaw, S. V., Zbořil, R. & Rogach, A. L. Temperature-dependent exciton and trap-related photoluminescence of CdTe quantum dots embedded in a NaCl matrix: implication in thermometry. Small 12, 466–476 (2016).
Jha, P. P. & Guyot-Sionnest, P. Trion decay in colloidal quantum dots. ACS Nano 3, 1011–1015 (2009).
Xia, Y. et al. Vertically concentrated quantum wells enabling highly efficient deep-blue perovskite light-emitting diodes. Angew. Chem. Int. Ed. 63, e202403739 (2024).
Yang, Y. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photon. 9, 259–266 (2015).
Lee, K.-H. et al. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. ACS Nano 7, 7295–7302 (2013).
Zhang, X., Li, D., Zhang, Z., Liu, H. & Wang, S. Constructing effective hole transport channels in cross-linked hole transport layer by stacking discotic molecules for high performance deep blue QLEDs. Adv. Sci. 9, 2200450 (2022).
Wang, Y.-K. et al. Self-assembled monolayer-based blue perovskite LEDs. Sci. Adv. 9, eadh2140 (2023).
Cai, F. et al. Defect passivation and electron band energy regulation of a ZnO electron transport layer through synergetic bifunctional surface engineering for efficient quantum dot light-emitting diodes. Nanoscale 15, 10677–10684 (2023).
Yoon, S.-Y. et al. High-efficiency blue and white electroluminescent devices based on non-Cd I–III–VI quantum dots. Nano Energy 63, 103869 (2019).
Li, C. H. A. et al. Mixed Ruddlesden–Popper and Dion–Jacobson phase perovskites for stable and efficient blue perovskite LEDs. Adv. Funct. Mater. 33, 2303301 (2023).
Ghorbani, A. et al. Changes in hole and electron injection under electrical stress and the rapid electroluminescence loss in blue quantum-dot light-emitting devices. Small 20, 2304580 (2024).
Jeong, W. H. et al. In situ cadmium surface passivation of perovskite nanocrystals for blue LEDs. J. Mater. Chem. A 9, 26750–26757 (2021).
Lee, S. et al. Brightening deep-blue perovskite light-emitting diodes: a path to Rec. 2020. Sci. Adv. 10, eadn8465 (2024).
Jiang, K. Y. et al. Efficient deep-blue light-emitting diodes through decoupling of colloidal perovskite quantum dots. Adv. Mater. 36, 2404856 (2024).
Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).
Zhang, L. et al. Manipulating local lattice distortion for spectrally stable and efficient mixed-halide blue perovskite LEDs. Angew. Chem. Int. Ed. 135, e202302184 (2023).
Cai, F. et al. Charge carrier regulation for efficient blue quantum-dot light-emitting diodes via a high-mobility coplanar cyclopentane[b]thiopyran derivative. Nano Lett. 24, 5284–5291 (2024).
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Flores, E. M., Moreira, M. L. & Piotrowski, M. J. Structural and electronic properties of bulk ZnX (X=O, S, Se, Te), ZnF2, and ZnO/ZnF2: a DFT investigation within PBE, PBE+U, and hybrid HSE functionals. J. Phys. Chem. A 124, 3778–3785 (2020).
Wu, Q. et al. Datasets for “Homogeneous ZnSeTeS quantum dots for efficient and stable pure blue LEDs”. figshare https://doi.org/10.6084/m9.figshare.28166900 (2025).