Thursday, March 6, 2025
No menu items!
HomeNatureHomogeneous ZnSeTeS quantum dots for efficient and stable pure-blue LEDs

Homogeneous ZnSeTeS quantum dots for efficient and stable pure-blue LEDs

  • Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    Article 
    CAS 
    PubMed 
    ADS 
    MATH 

    Google Scholar
     

  • Lee, S.-H. et al. Heterostructural tailoring of blue ZnSeTe quantum dots toward high-color purity and high-efficiency electroluminescence. Chem. Eng. J. 429, 132464 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y. J. et al. Crystallographic and photophysical analysis on facet-controlled defect-free blue-emitting quantum dots. Adv. Mater. 36, 2311719 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Imran, M. et al. Molecular additive-assisted tellurium homogenization in ZnSeTe quantum dots. Adv. Mater. 35, 2303528 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Gao, M. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 21, 7252–7260 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article 
    CAS 
    PubMed 
    ADS 
    MATH 

    Google Scholar
     

  • Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article 
    CAS 
    PubMed 
    ADS 
    MATH 

    Google Scholar
     

  • Deng, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505–511 (2022).

    Article 
    CAS 
    ADS 
    MATH 

    Google Scholar
     

  • Zhang, W. et al. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer. Nat. Commun. 15, 783 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Chen, X. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface–bulk coupling. Nat. Commun. 14, 284 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Han, C.-Y. et al. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices. ACS Energy Lett. 5, 1568–1576 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Bi, Y. et al. Reducing emission linewidth of pure-blue ZnSeTe quantum dots through shell engineering toward high color purity light-emitting diodes. Small 19, 2303247 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jang, E. P. et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 11, 46062–46069 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, S. et al. Air-stable and environmentally friendly full color-emitting ZnSeTe/ZnSe/ZnS quantum dots for display applications. ACS Appl. Nano Mater. 5, 18905–18911 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chang, J. H. et al. Impact of morphological inhomogeneity on excitons states in highly mismatched alloy ZnSe1−xTex nanocrystals. J. Phys. Chem. Lett. 13, 11464–11472 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, C. et al. Near-unity quantum yield ZnSeTe quantum dots enabled by controlling shell growth for efficient deep-blue light-emitting diodes. Adv. Funct. Mater. 34, 2313811 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Smith, A. M., Mohs, A. M. & Nie, S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 4, 56–63 (2009).

    Article 
    CAS 
    PubMed 
    ADS 
    MATH 

    Google Scholar
     

  • Lin, Y. C. et al. Time-resolved photoluminescence of isoelectronic traps in ZnSe1−xTex semiconductor alloys. Appl. Phys. Lett. 93, 241909 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Sohn, S. H. & Hamakawa, Y. Binding energies of simple isoelectronic impurities in II–VI semiconductors. Phys. Rev. B 46, 9452–9460 (1992).

    Article 
    CAS 
    ADS 
    MATH 

    Google Scholar
     

  • Cai, W. et al. Emission mechanism of bright and eco-friendly ZnSeTe quantum dots. Adv. Opt. Mater. 12, 2301970 (2023).

    Article 

    Google Scholar
     

  • Zheng, Z. et al. Bromide decorated eco-friendly ZnSeTe/ZnSe/ZnS quantum dots for efficient blue light-emitting diodes. Adv. Mater. Interfaces 10, 2202241 (2022).

    Article 

    Google Scholar
     

  • Neumark, G. F., Kuskovsky, I. L. & Jiang, H. Wide Bandgap Light Emitting Materials and Devices (Wiley, 2007).

  • Marcet, S., André, R. & Francoeur, S. Excitons bound to Te isoelectronic dyads in ZnSe. Phys. Rev. B 82, 235309 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ruberu, T. P. A. et al. Molecular control of the nanoscale: effect of phosphine–chalcogenide reactivity on CdS–CdSe nanocrystal composition and morphology. ACS Nano 6, 5348–5359 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Park, S. H. et al. Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 108, 093518 (2010).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kang, C. K. et al. Surface passivation by sulfur treatment of undoped p-CdTe (100). J. Appl. Phys. 88, 2013 (2000).

    Article 
    CAS 
    ADS 
    MATH 

    Google Scholar
     

  • Wu, J. et al. Temperature-dependent recombination dynamics and electroluminescence characteristics of colloidal CdSe/ZnS core/shell quantum dots. Appl. Phys. Lett. 119, 073303 (2021).

    Article 
    CAS 
    ADS 
    MATH 

    Google Scholar
     

  • Park, J., Won, Y.-H., Kim, T., Jang, E. & Kim, D. Electrochemical charging effect on the optical properties of InP/ZnSe/ZnS quantum dots. Small 16, 2003542 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Kalytchuk, S., Zhovtiuk, O., Kershaw, S. V., Zbořil, R. & Rogach, A. L. Temperature-dependent exciton and trap-related photoluminescence of CdTe quantum dots embedded in a NaCl matrix: implication in thermometry. Small 12, 466–476 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jha, P. P. & Guyot-Sionnest, P. Trion decay in colloidal quantum dots. ACS Nano 3, 1011–1015 (2009).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xia, Y. et al. Vertically concentrated quantum wells enabling highly efficient deep-blue perovskite light-emitting diodes. Angew. Chem. Int. Ed. 63, e202403739 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photon. 9, 259–266 (2015).

    Article 
    CAS 
    ADS 
    MATH 

    Google Scholar
     

  • Lee, K.-H. et al. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. ACS Nano 7, 7295–7302 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X., Li, D., Zhang, Z., Liu, H. & Wang, S. Constructing effective hole transport channels in cross-linked hole transport layer by stacking discotic molecules for high performance deep blue QLEDs. Adv. Sci. 9, 2200450 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y.-K. et al. Self-assembled monolayer-based blue perovskite LEDs. Sci. Adv. 9, eadh2140 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, F. et al. Defect passivation and electron band energy regulation of a ZnO electron transport layer through synergetic bifunctional surface engineering for efficient quantum dot light-emitting diodes. Nanoscale 15, 10677–10684 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yoon, S.-Y. et al. High-efficiency blue and white electroluminescent devices based on non-Cd I–III–VI quantum dots. Nano Energy 63, 103869 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Li, C. H. A. et al. Mixed Ruddlesden–Popper and Dion–Jacobson phase perovskites for stable and efficient blue perovskite LEDs. Adv. Funct. Mater. 33, 2303301 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ghorbani, A. et al. Changes in hole and electron injection under electrical stress and the rapid electroluminescence loss in blue quantum-dot light-emitting devices. Small 20, 2304580 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Jeong, W. H. et al. In situ cadmium surface passivation of perovskite nanocrystals for blue LEDs. J. Mater. Chem. A 9, 26750–26757 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. et al. Brightening deep-blue perovskite light-emitting diodes: a path to Rec. 2020. Sci. Adv. 10, eadn8465 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, K. Y. et al. Efficient deep-blue light-emitting diodes through decoupling of colloidal perovskite quantum dots. Adv. Mater. 36, 2404856 (2024).

    Article 

    Google Scholar
     

  • Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article 
    CAS 
    PubMed 
    ADS 
    MATH 

    Google Scholar
     

  • Zhang, L. et al. Manipulating local lattice distortion for spectrally stable and efficient mixed-halide blue perovskite LEDs. Angew. Chem. Int. Ed. 135, e202302184 (2023).

    Article 

    Google Scholar
     

  • Cai, F. et al. Charge carrier regulation for efficient blue quantum-dot light-emitting diodes via a high-mobility coplanar cyclopentane[b]thiopyran derivative. Nano Lett. 24, 5284–5291 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 
    ADS 
    MATH 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Flores, E. M., Moreira, M. L. & Piotrowski, M. J. Structural and electronic properties of bulk ZnX (X=O, S, Se, Te), ZnF2, and ZnO/ZnF2: a DFT investigation within PBE, PBE+U, and hybrid HSE functionals. J. Phys. Chem. A 124, 3778–3785 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Q. et al. Datasets for “Homogeneous ZnSeTeS quantum dots for efficient and stable pure blue LEDs”. figshare https://doi.org/10.6084/m9.figshare.28166900 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments