Friday, March 21, 2025
No menu items!
HomeNatureHistological signatures map anti-fibrotic factors in mouse and human lungs

Histological signatures map anti-fibrotic factors in mouse and human lungs

  • Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C. & Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29, 1161–1180 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Glasser, S. W. et al. Mechanisms of lung fibrosis resolution. Am. J. Pathol. 186, 1066–1077 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Glassberg, M. K. Overview of idiopathic pulmonary fibrosis, evidence-based guidelines, and recent developments in the treatment landscape. Am. J. Manag. Care 25, S195–S203 (2019).

    PubMed 
    MATH 

    Google Scholar
     

  • Michalski, J. E., Kurche, J. S. & Schwartz, D. A. From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic? Transl. Res. 241, 13–24 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, T. et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep. 22, 3625–3640 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tsukui, T. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 11, 1920 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 6, eaba1983 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Kheirollahi, V. et al. Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nat. Commun. 10, 2987 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Mascharak, S. et al. Desmoplastic stromal signatures predict patient outcomes in pancreatic ductal adenocarcinoma. Cell Rep. Med. 4, 101248 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foster, D. S. et al. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell 40, 1392–1406.e7 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mascharak, S. et al. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science 372, eaba2374 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coelho, P. G. B., de Souza, M. V., Conceição, L. G., Viloria, M. I. V. & Bedoya, S. A. O. Evaluation of dermal collagen stained with picrosirius red and examined under polarized light microscopy. An. Bra. Dermatol. 93, 415–418 (2018).

    Article 

    Google Scholar
     

  • Mao, Q., Wang, L., Goodison, S. & Sun, Y. Dimensionality reduction via graph structure learning. In Proc. 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (eds Cao, L. & Zhang, C.) 765–774 (2015).

  • Trapnell, C. et al. Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions. Nat. Biotechnol. 32, 381 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Organ, L. A. et al. Biomarkers of collagen synthesis predict progression in the PROFILE idiopathic pulmonary fibrosis cohort. Resp. Res. 20, 148 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Morse, C. et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur. Resp. J. 54, 1802441 (2019).

    Article 
    CAS 
    ADS 
    MATH 

    Google Scholar
     

  • Shen, M., Luo, Z. & Zhou, Y. Regeneration-associated transitional state cells in pulmonary fibrosis. Int. J. Mol. Sci. 23, 6757 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Enomoto, Y. et al. LTBP2 is secreted from lung myofibroblasts and is a potential biomarker for idiopathic pulmonary fibrosis. Clin. Sci. 132, 1565–1580 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Wang, S. et al. S100A8/A9 in inflammation. Front. Immunol. 9, 1298 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cui, L. et al. Activation of JUN in fibroblasts promotes pro-fibrotic programme and modulates protective immunity. Nat. Commun. 11, 2795 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Guan, R. et al. Bone morphogenetic protein 4 inhibits pulmonary fibrosis by modulating cellular senescence and mitophagy in lung fibroblasts. Eur. Resp. J. 60, 2102307 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Buschman, M. D. & Field, S. J. MYO18A: an unusual myosin. Adv. Biol. Reg. 67, 84–92 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. CCAAT/enhancer-binding proteins in fibrosis: complex roles beyond conventional understanding. Research 2022, 9891689 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. Transcriptional programs controlling perinatal lung maturation. PLoS ONE 7, e37046 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Swonger, J. M., Liu, J. S., Ivey, M. J. & Tallquist, M. D. Genetic tools for identifying and manipulating fibroblasts in the mouse. Differentiation 92, 66–83 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ghasemi, M., Seidkhani, H., Tamimi, F., Rahgozar, M. & Masoudi-Nejad, A. Centrality measures in biological networks. Curr. Bioinformatics 9, 426–441 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hermenean, A. et al. Galectin 1—a key player between tissue repair and fibrosis. Int. J. Mol. Sci. 23, 5548 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gremlich, S. et al. Tenascin-C inactivation impacts lung structure and function beyond lung development. Sci. Rep. 10, 5118 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Alsafadi, H. N. et al. An ex vivo model to induce early fibrosis-like changes in human precision-cut lung slices. Am. J. Physiol. 312, L896–L902 (2017).


    Google Scholar
     

  • Santoro, A. et al. SERPINE2 inhibits IL-1α-induced MMP-13 expression in human chondrocytes: involvement of ERK/NF-κB/AP-1 pathways. PLoS ONE 10, e0135979 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lupsa, N. et al. Skin‐homing CD8+ T cells preferentially express GPI‐anchored peptidase inhibitor 16, an inhibitor of cathepsin K. Eur. J. Immunol. 48, 1944–1957 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wu, X. et al. Regulating the cell shift of endothelial cell-like myofibroblasts in pulmonary fibrosis. Eur. Resp. J. 61, 2201799 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Habermann, A. C. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci. Adv. 6, eaba1972 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Tsukui, T., Wolters, P. J. & Sheppard, D. Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature 631, 627–634 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article 
    CAS 
    PubMed 
    ADS 
    MATH 

    Google Scholar
     

  • Liu, X. et al. Multiple fibroblast subtypes contribute to matrix deposition in pulmonary fibrosis. Am. J. Resp. Cell Mol. Biol. 69, 45–56 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hallowell, R. W., Amariei, D. & Danoff, S. K. Intravenous immunoglobulin as potential adjunct therapy for interstitial lung disease. Ann. Am. Thorac. Soc. 13, 1682–1688 (2016).

    PubMed 

    Google Scholar
     

  • Southam, D. S., Dolovich, M., O’byrne, P. M. & Inman, M. D. Distribution of intranasal instillations in mice: effects of volume, time, body position, and anesthesia. Am. J. Physiol. 282, L833–L839 (2002).

    CAS 

    Google Scholar
     

  • Henderson, W. R. et al. Inhibition of Wnt/β-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc. Natl Acad. Sci. USA 107, 14309–14314 (2010).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18, 1333–1341 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mo, Y. et al. Intratracheal administration of mesenchymal stem cells modulates lung macrophage polarization and exerts anti-asthmatic effects. Sci. Rep. 12, 11728 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Urbanek, K. et al. Intratracheal administration of mesenchymal stem cells modulates tachykinin system, suppresses airway remodeling and reduces airway hyperresponsiveness in an animal model. PLoS ONE 11, e0158746 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Govek, K. W. et al. Single-cell transcriptomic analysis of mIHC images via antigen mapping. Sci. Adv. 7, eabc5464 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 1695, 1–9 (2006).

    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments