Reid, I. & Jackson, H. R. Oceanic spreading rate and crustal thickness. Mar. Geophys. Res. 5, 165â172 (1981).
Bown, J. W. & White, R. S. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett. 121, 435â449 (1994).
Shen, Y. & Forsyth, D. W. Geochemical constraints on initial and final depths of melting beneath midâocean ridges. J. Geophys. Res. Solid Earth 100, 2211â2237 (1995).
Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405â412 (2003).
Cannat, M. How thick is the magmatic crust at slow spreading oceanic ridges? J. Geophys. Res. Solid Earth 101, 2847â2857 (1996).
Conley, M. M. & Dunn, R. A. Seismic shear wave structure of the uppermost mantle beneath the Mohns Ridge. Geochem. Geophys. Geosyst. 12, Q0AK01 (2011).
Corbalán, A. et al. Seismic velocity structure along and across the ultraslow-spreading Southwest Indian Ridge at 64°30â²E showcases flipping detachment faults. J. Geophys. Res. Solid Earth 126, e2021JB022177 (2021).
Grevemeyer, I. et al. Episodic magmatism and serpentinized mantle exhumation at an ultraslow-spreading centre. Nat. Geosci. 11, 444â448 (2018).
Momoh, E., Cannat, M., Watremez, L., Leroy, S. & Singh, S. C. Quasiâ3âD seismic reflection imaging and wideâangle velocity structure of nearly amagmatic oceanic lithosphere at the ultraslowâspreading Southwest Indian Ridge. J. Geophys. Res. Solid Earth 122, 9511â9533 (2017).
Li, J. et al. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge. Geophys. Res. Lett. 42, 2656â2663 (2015).
Niu, X. et al. Alongâaxis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50°E) from a wideâangle seismic experiment. Geochem. Geophys. Geosyst. 16, 468â485 (2015).
Minshull, T. A., Muller, M. R. & White, R. S. Crustal structure of the Southwest Indian Ridge at 66°E: seismic constraints. Geophys. J. Int. 166, 135â147 (2006).
Liu, J. et al. Water enrichment in the mid-ocean ridge by recycling of mantle wedge residue. Earth Planet. Sci. Lett. 584, 117455 (2022).
Yu, X. & Dick, H. J. B. Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge. Earth Planet. Sci. Lett. 531, 116002 (2020).
Michael, P. J. et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423, 956â961 (2003).
Jokat, W. et al. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature 423, 962â965 (2003).
Minshull, T. A. et al. Crustal structure at the Blake Spur fracture zone from expanding spread profiles. J. Geophys. Res. Solid Earth 96, 9955â9984 (1991).
Canales, J. P., Detrick, R. S., Lin, J., Collins, J. A. & Toomey, D. R. Crustal and upper mantle seismic structure beneath the rift mountains and across a nontransform offset at the MidâAtlantic Ridge (35°N). J. Geophys. Res. Solid Earth 105, 2699â2719 (2000).
Dunn, R. A. in Treatise on Geophysics (Second Edition) (ed. Schubert, G.) 419â451 (Elsevier, 2015).
Chen, Y. J. Oceanic crustal thickness versus spreading rate. Geophys. Res. Lett. 19, 753â756 (1992).
Christeson, G. L., Goff, J. A. & Reece, R. S. Synthesis of oceanic crustal structure from twoâdimensional seismic profiles. Rev. Geophys. 57, 504â529 (2019).
Dunn, R. A., LekiÄ, V., Detric, R. S. & Toomey, D. R. Threeâdimensional seismic structure of the MidâAtlantic Ridge (35°N): evidence for focused melt supply and lower crustal dike injection. J. Geophys. Res. Solid Earth 110, B09101 (2005).
Hooft, E. E. E., Detrick, R. S., Toomey, D. R., Collins, J. A. & Lin, J. Crustal thickness and structure along three contrasting spreading segments of the MidâAtlantic Ridge, 33.5°â35°N. J. Geophys. Res. Solid Earth 105, 8205â8226 (2000).
Jian, H., Singh, S. C., Chen, Y. J. & Li, J. Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge. Geology 45, 143â146 (2017).
Seher, T. et al. Crustal velocity structure of the Lucky Strike segment of the MidâAtlantic Ridge at 37°N from seismic refraction measurements. J. Geophys. Res. Solid Earth 115, B03103 (2010).
Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489â518 (2013).
Yang, A. Y. et al. A subduction influence on ocean ridge basalts outside the Pacific subduction shield. Nat. Commun. 12, 4757 (2021).
Danyushevsky, L. V., Eggins, S. M., Falloon, T. J. & Christie, D. M. H2O abundance in depleted to moderately enriched mid-ocean ridge magmas; part I: incompatible behaviour, implications for mantle storage, and origin of regional variations. J. Petrol. 41, 1329â1364 (2000).
Krein, S. B., Molitor, Z. J. & Grove, T. L. ReversePetrogen: a multiphase dry reverse fractional crystallization-mantle melting thermobarometer applied to 13,589 mid-ocean ridge basalt glasses. J. Geophys. Res. Solid Earth 126, e2020JB021292 (2021).
Hebert, L. B. & Montési, L. G. J. Generation of permeability barriers during melt extraction at midâocean ridges. Geochem. Geophys. Geosyst. 11, Q12008 (2010).
Schlindwein, V. & Schmid, F. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature 535, 276â279 (2016).
Magde, L. S. & Sparks, D. W. Threeâdimensional mantle upwelling, melt generation, and melt migration beneath segment slow spreading ridges. J. Geophys. Res. Solid Earth 102, 20571â20583 (1997).
Wanless, V. D., Behn, M. D., Shaw, A. M. & Plank, T. Variations in melting dynamics and mantle compositions along the Eastern Volcanic Zone of the Gakkel Ridge: insights from olivine-hosted melt inclusions. Contrib. Mineral. Petrol. 167, 1005 (2014).
Jokat, W., Kollofrath, J., Geissler, W. H. & Jensen, L. Crustal thickness and earthquake distribution south of the Logachev Seamount, Knipovich Ridge. Geophys. Res. Lett. 39, L08302 (2012).
Fialko, Y. A. & Rubin, A. M. Thermodynamics of lateral dike propagation: implications for crustal accretion at slow spreading midâocean ridges. J. Geophys. Res. Solid Earth. 103, 2501â2514 (1998).
Robinson, C. J., Bickle, M. J., Minshull, T. A., White, R. S. & Nichols, A. R. L. Low degree melting under the Southwest Indian Ridge: the roles of mantle temperature, conductive cooling and wet melting. Earth Planet. Sci. Lett. 188, 383â398 (2001).
Cannat, M., RommevauxâJestin, C. & Fujimoto, H. Melt supply variations to a magmaâpoor ultraâslow spreading ridge (Southwest Indian Ridge 61° to 69°E). Geochem. Geophys. Geosyst. 4, 9104 (2003).
Zhou, F. & Dyment, J. Temporal and spatial variation of seafloor spreading at ultraslow spreading ridges: contribution of marine magnetics. Earth Planet. Sci. Lett. 602, 117957 (2023).
Parmentier, E. M. & Morgan, J. P. Spreading rate dependence of three-dimensional structure in oceanic spreading centres. Nature 348, 325â328 (1990).
Sparks, D. W. & Parmentier, E. M. The structure of threeâdimensional convection beneath oceanic spreading centres. Geophys. J. Int. 112, 81â91 (1993).
Hirth, G. & Kohlstedt, D. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys. Monogr. 138, 83â106 (2003).
Liu, C.-Z. et al. Archean cratonic mantle recycled at a mid-ocean ridge. Sci. Adv. 8, eabn6749 (2022).
Meyzen, C. M., Toplis, M. J., Humler, E., Ludden, J. N. & Mével, C. A discontinuity in mantle composition beneath the southwest Indian ridge. Nature 421, 731â733 (2003).
Liu, C.-Z. et al. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452, 311â316 (2008).
Kristoffersen, Y., Husebye, E. S., Bungum, H. & Gregersen, S. Seismic investigations of the Nansen Ridge during the FRAM I experiment. Tectonophysics 82, 57â68 (1982).
White, R. S., Minshull, T. A., Bickle, M. J. & Robinson, C. J. Melt generation at very slow-spreading oceanic ridges: constraints from geochemical and geophysical data. J. Petrol. 42, 1171â1196 (2001).
Harding, J. L. et al. Magmatic-tectonic conditions for hydrothermal venting on an ultraslow-spread oceanic core complex. Geology 45, 839â842 (2017).
Dannowski, A. et al. Seismic structure of an oceanic core complex at the MidâAtlantic Ridge, 22°19â²N. J. Geophys. Res. Solid Earth 115, B07106 (2010).
Vaddineni, V. A., Singh, S. C., Grevemeyer, I., Audhkhasi, P. & Papenberg, C. Evolution of the crustal and upper mantle seismic structure from 0â27 Ma in the equatorial Atlantic Ocean at 2° 43â²S. J. Geophys. Res. Solid Earth 126, e2020JB021390 (2021).
Wang, T., Tucholke, B. E. & Lin, J. Spatial and temporal variations in crustal production at the MidâAtlantic Ridge, 25°Nâ27°30â²N and 0â27 Ma. J. Geophys. Res. Solid Earth 120, 2119â2142 (2015).
Ding, W. et al. Submarine wide-angle seismic experiments in the High Arctic: the JASMInE Expedition in the slowest spreading Gakkel Ridge. Geosyst. Geoenviron. 1, 100076 (2022).
Zelt, C. A. & Smith, R. B. Seismic traveltime inversion for 2-D crustal velocity structure. Geophys. J. Int. 108, 16â34 (1992).
Korenaga, J. et al. Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. J. Geophys. Res. Solid Earth 105, 21591â21614 (2000).
White, R. S., McKenzie, D. & OâNions, R. K. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J. Geophys. Res. Solid Earth 97, 19683â19715 (1992).
Nikishin, A. M., Gaina, C., Petrov, E. I., Malyshev, N. A. & Freiman, S. I. Eurasia Basin and Gakkel Ridge, Arctic Ocean: crustal asymmetry, ultra-slow spreading and continental rifting revealed by new seismic data. Tectonophysics 746, 64â82 (2018).
Kuo, B.-Y. & Forsyth, D. W. Gravity anomalies of the ridge-transform system in the South Atlantic between 31 and 34.5° S: upwelling centers and variations in crustal thickness. Mar. Geophys. Res. 10, 205â232 (1988).
Lin, J., Purdy, G. M., Schouten, H., Sempere, J.-C. & Zervas, C. Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge. Nature 344, 627â632 (1990).
Wessel, P. et al. The generic mapping tools version 6. Geochem. Geophys. Geosyst. 20, 5556â5564 (2019).
Andersen, O. B., Knudsen, P., Kenyon, S., Holmes, S. & Factor, J. K. in International Association of Geodesy Symposia Vol. 149 (eds Freymueller, J. T. & Sánchez, L.) 77â81 (Springer, 2019).
Jakobsson, M. et al. The international bathymetric chart of the Arctic Ocean version 4.0. Sci. Data 7, 176 (2020).
Behn, M. D., Boettcher, M. S. & Hirth, G. Thermal structure of oceanic transform faults. Geology 35, 307â310 (2007).
Seton, M. et al. A global data set of present-day oceanic crustal age and seafloor spreading parameters. Geochem. Geophys. Geosyst. 21, e2020GC009214 (2020).
Carlson, R. L. & Herrick, C. N. Densities and porosities in the oceanic crust and their variations with depth and age. J. Geophys. Res. Solid Earth 95, 9153â9170 (1990).
Christensen, N. I. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795â816 (2004).
Ma, X., Meert, J. G., Xu, Z. & Yi, Z. Late Triassic intra-oceanic arc system within Neotethys: evidence from cumulate appinite in the Gangdese belt, southern Tibet. Lithosphere 10, 545â565 (2018).
Weis, D. et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 7, Q08006 (2006).
Zong, T. et al. H2O in basaltic glasses from the slow-spreading Carlsberg Ridge: implications for mantle source and magmatic processes. Lithos 332â333, 274â286 (2019).
Herzberg, C. & Asimow, P. D. PRIMELT3 MEGA.XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus. Geochem. Geophys. Geosyst. 16, 563â578 (2015).
Heister, T., Dannberg, J., Gassmöller, R. & Bangerth, W. High accuracy mantle convection simulation through modern numerical methods â II: realistic models and problems. Geophys. J. Int. 210, 833â851 (2017).
Kronbichler, M., Heister, T. & Bangerth, W. High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int. 191, 12â29 (2012).
Zha, C., Zhang, F., Lin, J., Zhang, T. & Tian, J. On the relative importance of buoyancy and thickening of aging lithosphere in mantle upwelling and crustal production beneath global mid-ocean ridge system. J. Geophys. Res. Solid Earth 129, e2023JB028432 (2024).
Forsyth, D. W. Crustal thickness and the average depth and degree of melting in fractional melting models of passive flow beneath midâocean ridges. J. Geophys. Res. Solid Earth 98, 16073â16079 (1993).
Zhang, T. Data and Codes of JASMInE_2021. Figshare https://doi.org/10.6084/m9.figshare.2555721 (2024).
Zhang, T. JASMINE2021_GeochemistryData. Figshare https://doi.org/10.6084/m9.figshare.26123878 (2024).