Friday, October 4, 2024
No menu items!
HomeNatureHighly dynamic gamma-ray emissions are common in tropical thunderclouds

Highly dynamic gamma-ray emissions are common in tropical thunderclouds

  • Parks, G. K. et al. X‐ray enhancements detected during thunderstorm and lightning activities. Geophys. Res. Lett. 8, 1176–1179 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Dwyer, J. R., Smith, D. M. & Cummer, S. A. High-energy atmospheric physics: terrestrial gamma-ray flashes and related phenomena. Space Sci. Rev. 173, 133–196 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kelley, N. A. et al. Relativistic electron avalanches as a thunderstorm discharge competing with lightning. Nat. Commun. 6, 7845 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ostgaard, N. et al. Gamma ray glow observations at 20-km altitude. J. Geophys. Res. Atmos. 124, 7236–7254 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kochkin, P. et al. In-flight observation of gamma ray glows by ILDAS. J. Geophys. Res. Atmos. 122, 12801–12811 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCarthy, M. & Parks, G. K. Further observations of X-rays inside thunderstorms. Geophys. Res. Lett. 12, 393–396 (1985).

    Article 
    ADS 

    Google Scholar
     

  • McCarthy, M. P. & Parks, G. K. On the modulation of X ray fluxes in thunderstorms. J. Geophys. Res. Atmos. 97, 5857–5864 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Eack, K. B. & Beasley, W. H. Long‐duration X‐ray emissions observed in thunderstorms. J. Geophys. Res. Atmos. 120, 6887–6897 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Eack, K. B. et al. X-ray pulses observed above a mesoscale convective system. Geophys. Res. Lett. 23, 2915–2918 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Eack, K. B. et al. Initial results from simultaneous observation of X rays and electric fields in a thunderstorm. J. Geophys. Res. Atmos. 101, 29637–29640 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Eack, K. B. et al. Gamma-ray emissions observed in a thunderstorm anvil. Geophys. Res. Lett. 27, 185–188 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Wada, Y. et al. Catalog of gamma-ray glows during four winter seasons in Japan. Phys. Rev. Res. 3, 043117 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chilingarian, A. Thunderstorm ground enhancements—model and relation to lightning flashes. J. Atmos. Sol. Terr. Phys. 107, 68–76 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Chilingarian, A., Mailyan, B. & Vanyan, L. Recovering of the energy spectra of electrons and gamma rays coming from the thunderclouds. Atmos. Res. 114-115, 1–16 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chilingarian, A., Hovsepyan, G. & Hovhannisyan, A. Particle bursts from thunderclouds: natural particle accelerators above our heads. Phys. Rev. D 83, 062001 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Chilingarian, A., Hovsepyan, G. & Vanyan, L. On the origin of the particle fluxes from the thunderclouds: energy spectra analysis. Europhys. Lett. 106, 59001 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tsuchiya, H. et al. Hardening and termination of long-duration γ rays detected prior to lightning. Phys. Rev. Lett. 111, 015001 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuchiya, H. et al. Long-duration γ ray emissions from 2007 and 2008 winter thunderstorms. J. Geophys. Res. Atmos. 116, D09113 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Smith, D. M. et al. Terrestrial gamma-ray flashes observed up to 20 MeV. Science 07, 1085–1088 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Marisaldi, M. et al. Detection of terrestrial gamma ray flashes up to 40 MeV by the AGILE satellite. J. Geophys. Res. Space Phys. 115, A00E13 (2010).

    Article 

    Google Scholar
     

  • Briggs, M. S. et al. First results on terrestrial gamma ray flashes from the Fermi Gamma‐ray Burst Monitor. J. Geophys. Res. Space Phys. 115, A07323 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ostgaard, N. et al. First 10 months of TGF observations by ASIM. J. Geophys. Res. Atmos. 124, 14024–14036 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dwyer, J. R. Positron clouds within thunderstorms. J. Plasma Phys. 81, 475810405 (2015).

    Article 

    Google Scholar
     

  • Østgaard, N. et al. Flickering gamma-ray flashes, the missing link between gamma glows and TGFs. Nature https://doi.org/10.1038/s41586-024-07893-0 (2024).

  • Tsuchiya, H. et al. Observation of thundercloud-related gamma rays and neutrons in Tibet. Phys. Rev. D 85, 092006 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Sarria, D. et al. Library of simulated gamma-ray glows and application to previous airborne observations. J. Geophys. Res. Atmos. 128, e2022JD037956 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wada, Y. et al. Negative excursion of surface electric fields during gamma-ray glows in winter thunderstorms. J. Geophys. Res. Atmos. 128, e2023JD039354 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Enoto, T. et al. Photonuclear reactions triggered by lightning discharge. Nature 551, 481–484 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hansen, R. S. et al. How simulated fluence of photons from terrestrial gamma ray flashes at aircraft and balloon altitudes depends on initial parameters. J. Geophys. Res. Space Phys. 118, 2333–2339 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Østgaard, N. et al. The Modular X- and Gamma-Ray Sensor (MXGS) of the ASIM payload on the International Space Station. Space Sci. Rev. 215, 23 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Amiot, C. G. et al. Dual-polarization deconvolution and geophysical retrievals from the Advanced Microwave Precipitation Radiometer during OLYMPEX/RADEX. J. Atmos. Ocean. Technol. 38, 607–628 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Leppert, K. D. & Cecil, D. J. Signatures of hydrometeor species from airborne passive microwave data for frequencies 10–183 GHz. J. Appl. Meteorol. Climatol. 54, 1313–1334 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Battaglia, A. et al. Using a multiwavelength suite of microwave instruments to investigate the microphysical structure of deep convective cores. J. Geophys. Res. Atmos. 121, 9356–9381 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heymsfield, G. M. et al. in Advances in Weather Radar Vol. 1 (eds Bringi, V. N., Mishra, K. V. & Thurai, M.) 231–282 (Institution of Engineering and Technology, 2024).

  • Bateman, M. G. et al. A low-noise, microprocessor-controlled, internally digitizing rotating-vane electric field mill for airborne platforms. J. Atmos. Ocean. Technol. 24, 1245–1255 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Mach, D. M., Blakeslee, R. J., Bateman, M. G. & Bailey, J. C. Electric fields, conductivity, and estimated currents from aircraft overflights of electrified clouds. J. Geophys. Res. Atmos. 114, D10204 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Mach, D. M., Blakeslee, R. J., Bateman, M. G. & Bailey, J. C. Comparisons of total currents based on storm location, polarity, and flash rates derived from high‐altitude aircraft overflights. J. Geophys. Res. Atmos. 115, D03201 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Schultz, C. J. et al. Remote sensing of electric fields observed within winter precipitation during the 2020 Investigation of Microphysics and Precipitation for Atlantic Coast‐Threatening Snowstorms (IMPACTS) field campaign. J. Geophys. Res. Atmos. 126, e2021JD034704 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Mach, D. M. & Koshak, W. J. General matrix inversion technique for the calibration of electric field sensor arrays on aircraft platforms. J. Atmos. Ocean. Technol. 24, 1576–1587 (2007).

    Article 
    ADS 

    Google Scholar
     

  • National Oceanic and Atmospheric Administration (NOAA) & National Aeronautics and Space Administration (NASA). GOES-R Series Product Definition and Users’ Guide (PUG), 27–28 (NOAA & NASA, 2019).

  • Thomas, R. J. et al. Observations of VHF source powers radiated by lightning. Geophys. Res. Lett. 28, 143–146 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Agostinelli, S. et al. Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dwyer, J. R. A fundamental limit on electric fields in air. Geophys. Res. Lett. 30, 2055 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Marisaldi, M. Data used in the study: Highly dynamic gamma-ray emissions are common in tropical thunderclouds. Zenodo https://doi.org/10.5281/zenodo.12531291 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments