Saturday, November 23, 2024
No menu items!
HomeNatureHighest ocean heat in four centuries places Great Barrier Reef in danger

Highest ocean heat in four centuries places Great Barrier Reef in danger

  • Australian Institute of Marine Science. Long-Term Monitoring Program. https://www.aims.gov.au/research-topics/monitoring-and-discovery/monitoring-great-barrier-reef/long-term-monitoring-program (2024).

  • Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).


    Google Scholar
     

  • Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Great Barrier Reef Marine Park Authority. Great Barrier Reef Outlook Report 2019 (Great Barrier Reef Marine Park Authority, 2019).

  • Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, K. L., Colefax, A. P., Tucker, J. P., Kelaher, B. P. & Santos, I. R. Global coral reef ecosystems exhibit declining calcification and increasing primary productivity. Commun. Earth Environ. 2, 105 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Westcott, D. A. et al. Relative efficacy of three approaches to mitigate Crown-of-Thorns Starfish outbreaks on Australia’s Great Barrier Reef. Sci. Rep. 10, 12594 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mellin, C. et al. Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts. Glob. Chang. Biol. 25, 2431–2445 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoegh-Guldberg, O. & Smith, G. J. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Biol. Ecol. 129, 279–303 (1989).

    Article 

    Google Scholar
     

  • DeCarlo, T. M. et al. Acclimatization of massive reef-building corals to consecutive heatwaves. Proc. Biol. Sci. 286, 20190235 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGowan, H. & Theobald, A. ENSO weather and coral bleaching on the Great Barrier Reef, Australia. Geophys. Res. Lett. 44, 10,601–10,607 (2017).

    Article 

    Google Scholar
     

  • Zhao, W., Huang, Y., Siems, S. & Manton, M. The role of clouds in coral bleaching events over the Great Barrier Reef. Geophys. Res. Lett. 48, e2021GL093936 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Oxley, W. G., Emslie, M., Muir, P. & Thompson, A. Marine Surveys Undertaken in the Lihou Reef National Nature Reserve (Australian Institute of Marine Science, 2004).

  • DeCarlo, T. M. & Harrison, H. B. An enigmatic decoupling between heat stress and coral bleaching on the Great Barrier Reef. PeerJ 7, e7473 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • UNESCO World Heritage Committee. Extended 44th Session of the World Heritage Committee, Fuzhou (China) 16–31 July 2021. Draft decision 44 COM 7B.90. https://whc.unesco.org/document/188005 (UNESCO, 2021).

  • UNESCO World Heritage Committee. Extended 45th Session of the World Heritage Committee, Riyadh (Saudi Arabia) 10–25 September 2023. Decision 45 COM 7B.13. https://whc.unesco.org/document/199654 (UNESCO, 2023).

  • IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Kamenos, N. A. & Hennige, S. J. Reconstructing four centuries of temperature-induced coral bleaching on the Great Barrier Reef. Front. Mar. Sci. 5, 283 (2018).

    Article 

    Google Scholar
     

  • Hoegh-Guldberg, O. et al. Commentary: reconstructing four centuries of temperature-induced coral bleaching on the Great Barrier Reef. Front. Mar. Sci. 6, 86 (2019).

    Article 

    Google Scholar
     

  • DeCarlo, T. M. Commentary: reconstructing four centuries of temperature-induced coral bleaching on the Great Barrier Reef. Front. Mar. Sci. 7, 30 (2020).

    Article 

    Google Scholar
     

  • Hendy, E. J. et al. Abrupt decrease in tropical Pacific sea surface salinity at end of Little Ice Age. Science 295, 1511–1514 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Calvo, E. et al. Interdecadal climate variability in the Coral Sea since 1708 A.D. Palaeogeogr. Palaeoclimatol. Palaeoecol. 248, 190–201 (2007).

    Article 

    Google Scholar
     

  • Zinke, J. et al. North Flinders Reef (Coral Sea, Australia) Porites sp. corals as a candidate global boundary stratotype section and point for the Anthropocene series. Anthropocene Rev. 10, 201–224 (2023).

    Article 

    Google Scholar
     

  • Spady, B. L. et al. Global Coral Bleaching Database (NCEI Accession 0228498) (NOAA National Centers for Environmental Information, 2022); https://www.ncei.noaa.gov/archive/accession/0228498.

  • Huang, B. et al. Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gillett, N. P. et al. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev. 9, 3685–3697 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hawkins, E. et al. Observed emergence of the climate change signal: from the familiar to the unknown. Geophys. Res. Lett. 47, e2019GL086259 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gagan, M. K. et al. Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific. Science 279, 1014–1018 (1998).

  • Arzey, A. K. et al. Coral skeletal proxy records database for the Great Barrier Reef, Australia. Preprint at Earth Syst. Sci. Data https://doi.org/10.5194/essd-2024-159 (2024).

  • Brenner, L. D. et al. Coral record of Younger Dryas Chronozone warmth on the Great Barrier Reef. Paleoceanogr. Paleoclimatol. 35, e2020PA003962 (2020).

    Article 

    Google Scholar
     

  • Furnas, M. J. & Mitchell, A. W. Nutrient inputs into the central Great Barrier Reef (Australia) from subsurface intrusions of Coral Sea waters: a two-dimensional displacement model. Cont. Shelf Res. 16, 1127–1148 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Wolanski, E., Andutta, F., Deleersnijder, E., Li, Y. & Thomas, C. J. The Gulf of Carpentaria heated Torres Strait and the Northern Great Barrier Reef during the 2016 mass coral bleaching event. Estuar. Coast. Shelf Sci. 194, 172–181 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Oliver, E. C. J. & Holbrook, N. J. Extending our understanding of South Pacific gyre ‘spin-up’: modeling the East Australian Current in a future climate. J. Geophys. Res. Oceans 119, 2788–2805 (2014).

    Article 
    ADS 

    Google Scholar
     

  • DeCarlo, T. M. et al. Nutrient-supplying ocean currents modulate coral bleaching susceptibility. Sci. Adv. 6, eabc5493 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chan, D. & Huybers, P. Correcting observational biases in sea surface temperature observations removes anomalous warmth during World War II. J. Clim. 34, 4585–4602 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chan, D., Kent, E. C., Berry, D. I. & Huybers, P. Correcting datasets leads to more homogeneous early-twentieth-century sea surface warming. Nature 571, 393–397 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoegh-Guldberg, O. et al. Chapter 3: Impacts of 1.5°C global warming on natural and human systems. In Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (IPCC, 2018).

  • Meinshausen, M. et al. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 604, 304–309 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Matthews, H. D. & Wynes, S. Current global efforts are insufficient to limit warming to 1.5 °C. Science 376, 1404–1409 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6, e5347 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes, T. P., Baird, A. H., Morrison, T. H. & Torda, G. Principles for coral reef restoration in the anthropocene. One Earth 6, 656–665 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Logan, C. A., Dunne, J. P., Ryan, J. S., Baskett, M. L. & Donner, S. D. Quantifying global potential for coral evolutionary response to climate change. Nat. Clim. Chang. 11, 537–542 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dixon, A. M., Forster, P. M., Heron, S. F., Stoner, A. M. K. & Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLOS Clim. 1, e0000004 (2022).

    Article 

    Google Scholar
     

  • Coplen, T. B. Discontinuance of SMOW and PDB. Nature 375, 285 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van Albada, S. J. & Robinson, P. A. Transformation of arbitrary distributions to the normal distribution with application to EEG test-retest reliability. J. Neurosci. Methods 161, 205–211 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Emile-Geay, J. & Tingley, M. Inferring climate variability from nonlinear proxies: application to palaeo-ENSO studies. Clim. Past 12, 31–50 (2016).

    Article 

    Google Scholar
     

  • Barnes, D. J., Taylor, R. B. & Lough, J. M. On the inclusion of trace materials into massive coral skeletons. Part II: distortions in skeletal records of annual climate cycles due to growth processes. J. Exp. Mar. Biol. Ecol. 194, 251–275 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Gagan, M. K., Dunbar, G. B. & Suzuki, A. The effect of skeletal mass accumulation in Porites on coral Sr/Ca and δ18O paleothermometry. Paleoceanogr. Paleoclimatol. 27, PA1203 (2012).

    ADS 

    Google Scholar
     

  • Schneider, T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Clim. 14, 853–871 (2001).

    Article 
    ADS 

    Google Scholar
     

  • PAGES 2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649 (2019).

  • Cook, E. R., Briffa, K. R. & Jones, P. D. Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int. J. Climatol. 14, 379–402 (1994).

    Article 

    Google Scholar
     

  • Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I − a discussion of principles. J. Hydrol. 10, 282–290 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Otto-Bliesner, B. L. et al. Climate variability and change since 850 CE: an ensemble approach with the Community Earth System Model. Bull. Am. Meteorol. Soc. 97, 735–754 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Evans, M. N., Kaplan, A. & Cane, M. A. Optimal sites for coral-based reconstruction of global sea surface temperature. Paleoceanogr. Paleoclimatol. 13, 502–516 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Russon, T., Tudhope, A. W., Hegerl, G. C., Collins, M. & Tindall, J. Inter-annual tropical Pacific climate variability in an isotope-enabled CGCM: Implications for interpreting coral stable oxygen isotope records of ENSO. Clim. Past 9, 1543–1557 (2013).

    Article 

    Google Scholar
     

  • PAGES Hydro2k Consortium. Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Clim. Past 13, 1851–1900 (2017).

  • Freund, M. B. et al. Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat. Geosci. 12, 450–455 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gagan, M. K. et al. New views of tropical paleoclimates from corals. Quat. Sci. Rev. 19, 45–64 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Thompson, D. M., Ault, T. R., Evans, M. N., Cole, J. E. & Emile-Geay, J. Comparison of observed and simulated tropical climate trends using a forward model of coral δ18O. Geophys. Res. Lett. 38, L14706 (2011).

    ADS 

    Google Scholar
     

  • LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 33, L12604 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Reed, E. V., Thompson, D. M. & Anchukaitis, K. J. Coral-based sea surface salinity reconstructions and the role of observational uncertainties in inferred variability and trends. Paleoceanogr. Paleoclimatol. 37, e2021PA004371 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Khaliq, M. N., Ouarda, T. B. M. J., Gachon, P., Sushama, L. & St-Hilaire, A. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. J. Hydrol. 368, 117–130 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Mahlstein, I., Hegerl, G. & Solomon, S. Emerging local warming signals in observational data. Geophys. Res. Lett. 39, L21711 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Freeman, E. et al. ICOADS Release 3.0: a major update to the historical marine climate record. Int. J. Climatol. 37, 2211–2232 (2017).

    Article 

    Google Scholar
     

  • Huang, B. et al. Uncertainty estimates for sea surface temperature and land surface air temperature in NOAAGlobalTemp version 5. J. Clim. 33, 1351–1379 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Druffel, E. R. M. & Griffin, S. Variability of surface ocean radiocarbon and stable isotopes in the southwestern Pacific. J. Geophys. Res. 104, 23607–23613 (1999).

    Article 
    ADS 

    Google Scholar
     

  • DeLong, K. L., Quinn, T. M., Taylor, F. W., Lin, K. & Shen, C.-C. Sea surface temperature variability in the southwest tropical Pacific since AD 1649. Nat. Clim. Change 2, 799–804 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Quinn, T. et al. A multicentury stable isotope record from a New Caledonia coral: Interannual and decadal SST variability in the southwest Pacific since 1657. Paleoceanography 13, 412–426 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Quinn, T. M., Crowley, T. J. & Taylor, F. W. New stable isotope results from a 173-year coral from Espiritu Santo, Vanuatu. Geophys. Res. Lett. 23, 3413–3416 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Alibert, C. & Kinsley, L. A 170-year Sr/Ca and Ba/Ca coral record from the western Pacific warm pool: 1. What can we learn from an unusual coral record? J. Geophys. Res. Oceans 113, C04008 (2008).

    ADS 

    Google Scholar
     

  • Tudhope, A. W. et al. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Science 291, 1511–1517 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Urban, F. E., Cole, J. E. & Overpeck, J. T. Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record. Nature 407, 989–993 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guilderson, T. P. & Schrag, D. P. Reliability of coral isotope records from the western Pacific warm pool: A comparison using age-optimized records. Paleoceanography 14, 457–464 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Quinn, T. M., Taylor, F. W. & Crowley, T. J. Coral-based climate variability in the Western Pacific Warm Pool since 1867. J. Geophys. Res. 111, C11006 (2006).

    ADS 

    Google Scholar
     

  • Gorman, M. K. et al. A coral-based reconstruction of sea surface salinity at Sabine Bank, Vanuatu from 1842 to 2007 CE. Paleoceanography 27, PA3226 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bagnato, S., Linsley, B. K., Howe, S. S., Wellington, G. M. & Salinger, J. Coral oxygen isotope records of interdecadal climate variations in the South Pacific Convergence Zone region. Geochem. Geophys. Geosyst. 6, Q06001 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Linsley, B. K. et al. Tracking the extent of the South Pacific Convergence Zone since the early 1600s. Geochem. Geophys. Geosyst. 7, Q05003 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Cole, J. E., Fairbanks, R. G. & Shen, G. T. Recent variability in the Southern Oscillation: Isotopic results from a Tarawa Atoll coral. Science 260, 1790–1793 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dassié, E. P. et al. A Fiji multi-coral δ18O composite approach to obtaining a more accurate reconstruction of the last two-centuries of the ocean-climate variability in the South Pacific Convergence Zone region. Paleoceanography 29, 1196–1213 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Carton, J. A., Chepurin, G. A. & Chen, L. SODA3: A new ocean climate reanalysis. J. Clim. 31, 6967–6983 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci. 15, 779–808 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, L. et al. Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Clim. 33, 10357–10381 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Thompson, D. M. et al. Identifying hydro‐sensitive coral δ18O records for improved high‐resolution temperature and salinity reconstructions. Geophys. Res. Lett. 49, e2021GL096153 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wu, Y., Fallon, S. J., Cantin, N. E. & Lough, J. M. Assessing multiproxy approaches (Sr/Ca, U/Ca, Li/Mg, and B/Mg) to reconstruct sea surface temperature from coral skeletons throughout the Great Barrier Reef. Sci. Total Environ. 786, 147393 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadler, J., Webb, G. E., Leonard, N. D., Nothdurft, L. D. & Clark, T. R. Reef core insights into mid-Holocene water temperatures of the southern Great Barrier Reef. Paleoceanography 31, 1395–1408 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Roche, R. C. et al. Mid-Holocene sea surface conditions and riverine influence on the inshore Great Barrier Reef. Holocene 24, 885–897 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Reed, E. V., Cole, J. E., Lough, J. M., Thompson, D. & Cantin, N. E. Linking climate variability and growth in coral skeletal records from the Great Barrier Reef. Coral Reefs 38, 29–43 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Razak, T. B. et al. Use of skeletal Sr/Ca ratios to determine growth patterns in a branching coral Isopora palifera. Mar. Biol. 164, 96 (2017).

    Article 

    Google Scholar
     

  • Marshall, J. F. Decadal-scale, High Resolution Records of Sea Surface Temperature in the Eastern Indian and South Western Pacific Oceans from Proxy Records of the Strontium/calcium Ratio of Massive Porites Corals PhD thesis, Australian National Univ. (2000).

  • Marshall, J. F. & McCulloch, M. T. An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim. Cosmochim. Acta 66, 3263–3280 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gagan, M. K. et al. Coral oxygen isotope evidence for recent groundwater fluxes to the Australian Great Barrier Reef. Geophys. Res. Lett. 29, 43-1–43-4 (2002).

    Article 

    Google Scholar
     

  • D’Olivo, J. P., Sinclair, D. J., Rankenburg, K. & McCulloch, M. T. A universal multi-trace element calibration for reconstructing sea surface temperatures from long-lived Porites corals: Removing ‘vital-effects’. Geochim. Cosmochim. Acta 239, 109–135 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Fallon, S. J., McCulloch, M. T. & Alibert, C. Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22, 389–404 (2003).

    Article 

    Google Scholar
     

  • Brenner, L. D., Linsley, B. K. & Potts, D. C. A modern Sr/Ca-δ18O-sea surface temperature calibration for Isopora corals on the Great Barrier Reef. Paleoceanography 32, 182–194 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Alibert, C. et al. Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochim. Cosmochim. Acta 67, 231–246 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Murty, S. A. et al. Spatial and temporal robustness of Sr/Ca-SST calibrations in Red Sea corals: Evidence for influence of mean annual temperature on calibration slopes. Paleoceanogr. Paleoclimatol. 33, 443–456 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sayani, H. R., Cobb, K. M., DeLong, K., Hitt, N. T. & Druffel, E. R. M. Intercolony δ18O and Sr/Ca variability among Porites spp. corals at Palmyra Atoll: Toward more robust coral-based estimates of climate. Geochem. Geophys. Geosyst. 20, 5270–5284 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Otto, F. E. L. Geert Jan van Oldenborgh 1961–2021. Nat. Clim. Chang. 11, 1017 (2021).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments