Thursday, February 19, 2026
No menu items!
HomeNatureHigher-dimensional Fermiology in bulk moiré metals

Higher-dimensional Fermiology in bulk moiré metals

  • Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nuckolls, K. P. & Yazdani, A. A microscopic perspective on moiré materials. Nat. Rev. Mater. 9, 460–480 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, S. Y. F. et al. Time-reversal symmetry breaking superconductivity between twisted cuprate superconductors. Science 382, 1422–1427 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cummins, H. Z. Experimental studies of structurally incommensurate crystal phases. Phys. Rep. 185, 211–409 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smaalen, S. V. Incommensurate Crystallography (Oxford Univ. Press, 2007).

  • Janssen, T., Chapuis, G. & de Boissieu, M. Aperiodic Crystals: From Modulated Phases to Quasicrystals: Structure and Properties 2nd edn (Oxford Univ. Press, 2018).

  • Onsager, L. Interpretation of the de Haas-van Alphen effect. Lond. Edinb. Dublin Philos. Mag. J. Sci. 43, 1006–1008 (1952).

    Article 

    Google Scholar
     

  • Lifshitz, I. M. & Kosevich, A. M. On the theory of magnetic susceptibility of metals at low temperatures. Zh. Eksp. Teor. Fiz. 29, 730–742 (1955).


    Google Scholar
     

  • Leeb, V., Huber, N., Pfleiderer, C., Knolle, J. & Wilde, M. A. A field guide to non-Onsager quantum oscillations in metals. Adv. Phys. Res. 4, 2400134 (2025).

    Article 

    Google Scholar
     

  • de Wolff, P. M. The pseudo-symmetry of modulated crystal structures. Acta Crystallogr. A 30, 777–785 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Janner, A. & Janssen, T. Symmetry of periodically distorted crystals. Phys. Rev. B 15, 643–658 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hazzard, K. R. A. & Gadway, B. Synthetic dimensions. Phys. Today 76, 62–63 (2023).

    Article 

    Google Scholar
     

  • Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019).

    Article 

    Google Scholar
     

  • Sugawa, S., Salces-Carcoba, F., Perry, A. R., Yue, Y. & Spielman, I. B. Second Chern number of a quantum-simulated non-Abelian Yang monopole. Science 360, 1429–1434 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakai, S., Takemori, N., Koga, A. & Arita, R. Superconductivity on a quasiperiodic lattice: extended-to-localized crossover of Cooper pairs. Phys. Rev. B 95, 024509 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Cao, Y. et al. Kohn-Luttinger mechanism driven exotic topological superconductivity on the Penrose lattice. Phys. Rev. Lett. 125, 017002 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, H. T. & Allmann, R. The crystal structure and crystal chemistry of valleriite. Z. Kristallogr. Cryst. Mater. 127, 73–93 (1968).

    Article 
    CAS 

    Google Scholar
     

  • Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiegers, G. A. Misfit layer compounds: structures and physical properties. Prog. Solid State Chem. 24, 1–139 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Goldman, A. I. & Kelton, R. F. Quasicrystals and crystalline approximants. Rev. Mod. Phys. 65, 213–230 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Bancel, P. A., Heiney, P. A., Stephens, P. W., Goldman, A. I. & Horn, P. M. Structure of rapidly quenched Al-Mn. Phys. Rev. Lett. 54, 2422–2425 (1985).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Maharaj, A. V. & Kivelson, S. Disruption of quantum oscillations by an incommensurate charge density wave. Phys. Rev. B 91, 085105 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. 108, 12233–12237 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devarakonda, A. et al. Clean 2D superconductivity in a bulk van der Waals superlattice. Science 370, 231–236 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, K. et al. Two-dimensional superconductivity in a bulk superlattice van der Waals material Ba6Nb11Se28. Phys. Rev. Mater. 6, 044806 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Devarakonda, A. et al. Evidence of striped electronic phases in a structurally modulated superlattice. Nature 631, 526–530 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khasanova, N. R. et al. A new structure type of the ternary sulfide Eu1.3Nb1.9S5. J. Solid State Chem. 164, 345–353 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Everson, M. P., Johnson, A., Lu, H.-A., Coleman, R. V. & Falicov, L. M. Magnetoquantum oscillations, magnetic breakdown, and Fermi-surface modifications in NbSe3. Phys. Rev. B. 36, 6953–6962 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hill, S. et al. Quantum limit and anomalous field-induced insulating behavior in η-Mo4O11. Phys. Rev. B. 55, 2018–2031 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huber, N. et al. Quantum oscillations of the quasiparticle lifetime in a metal. Nature 621, 276–281 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerhardts, R. R., Weiss, D. & Klitzing, K. V. Novel magnetoresistance oscillations in a periodically modulated two-dimensional electron gas. Phys. Rev. Lett. 62, 1173–1176 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Janssen, T. Aperiodic crystals: a contradictio in terminis? Phys. Rep. 168, 55–113 (1988).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Boada, O., Celi, A., Latorre, J. I. & Lewenstein, M. Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lohse, M., Schweizer, C., Price, H. M., Zilberberg, O. & Bloch, I. Exploring 4D quantum Hall physics with a 2D topological charge pump. Nature 553, 55–58 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zilberberg, O. et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature 553, 59–62 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, J. P. & Birman, J. L. Electronic structure of a quasiperiodic system. Phys. Rev. B. 36, 4471–4474 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Batalla, E., Razavi, F. S. & Datars, W. R. Fermi surface of Hg3−δAsF6 and Hg3−δSbF6. Phys. Rev. B. 25, 2109–2118 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kawamoto, T. et al. Fermi surface of the organic superconductor (MDT–ST)(I3)0.417 reconstructed by incommensurate potential. Phys. Rev. B 73, 024503 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Schnars, U. & Jüptner, W. Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33, 179–181 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bousso, R. The holographic principle. Rev. Mod. Phys. 74, 825–874 (2002).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Pastawski, F., Yoshida, B., Harlow, D. & Preskill, J. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. J. High Energy Phys. 2015, 149 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments