Friday, September 19, 2025
No menu items!
HomeNatureHigh-density soft bioelectronic fibres for multimodal sensing and stimulation

High-density soft bioelectronic fibres for multimodal sensing and stimulation

  • Canales, A., Park, S., Kilias, A. & Anikeeva, P. Multifunctional fibers as tools for neuroscience and neuroengineering. Acc. Chem. Res. 51, 829–838 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Multifunctional fibers to shape future biomedical devices. Adv. Funct. Mater. 29, 1902834 (2019).

    Article 

    Google Scholar
     

  • Lozano, A. M. et al. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15, 148–160 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahrilas, P. J. & Sifrim, D. High-resolution manometry and impedance-pH/manometry: valuable tools in clinical and investigational esophagology. Gastroenterology 135, 756–769 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Zeng, K., Shi, X., Tang, C., Liu, T. & Peng, H. Design, fabrication and assembly considerations for electronic systems made of fibre devices. Nat. Rev. Mater. 8, 552–561 (2023).

  • Richard, I., Schyrr, B., Aiassa, S., Carrara, S. & Sorin, F. All-in-fiber electrochemical sensing. ACS Appl. Mater. Interfaces 13, 43356–43363 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, I. H. et al. Human-muscle-inspired single fibre actuator with reversible percolation. Nat. Nanotechnol. 17, 1198–1205 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang, S. et al. Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat. Commun. 13, 3173 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, T. et al. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat. Commun. 11, 6006 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanik, M. et al. Strain-programmable fiber-based artificial muscle. Science 365, 145–150 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahasrabudhe, A. et al. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat. Biotechnol. 42, 892–904 (2023).

  • Xu, Z. & Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Biomimetic spinning of soft functional fibres via spontaneous phase separation. Nat. Electron. 6, 338–348 (2023).

  • Pi, Q. et al. Digitally tunable microfluidic bioprinting of multilayered cannular tissues. Adv. Mater. 30, 1706913 (2018).

    Article 

    Google Scholar
     

  • Nan, K. et al. Low-cost gastrointestinal manometry via silicone–liquid-metal pressure transducers resembling a quipu. Nat. Biomed. Eng. 6, 1092–1104 (2022).

  • Lee, J. et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kalidasan, V. et al. Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat. Biomed. Eng. 5, 1217–1227 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Qu, Y. et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 30, 1707251 (2018).

    Article 

    Google Scholar
     

  • Driscoll, N. et al. Multifunctional neural probes enable bidirectional electrical, optical, and chemical recording and stimulation in vivo. Adv. Mater. https://doi.org/10.1002/adma.202408154 (2024).

  • Lee, Y. et al. Selectively micro-patternable fibers via in-fiber photolithography. ACS Cent. Sci. 6, 2319–2325 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, Y. et al. An ultraflexible electrode array for large‐scale chronic recording in the nonhuman primate brain. Adv. Sci. 10, 2302333 (2023).

    Article 

    Google Scholar
     

  • Le Floch, P. et al. 3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers. Nat. Nanotechnol. 19, 319–329 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rivkin, B. et al. Electronically integrated microcatheters based on self-assembling polymer films. Sci. Adv. 7, eabl5408 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy. Sci. Adv. 9, eadj0540 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, W. et al. Monolithic mtesla-level magnetic induction by self-rolled-up membrane technology. Sci. Adv. 6, eaay4508 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabler, F., Karnaushenko, D. D., Karnaushenko, D. & Schmidt, O. G. Magnetic origami creates high performance micro devices. Nat. Commun. 10, 3013 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipomi, D. J., Chiechi, R. C., Reus, W. F. & Whitesides, G. M. Laterally ordered bulk heterojunction of conjugated polymers: nanoskiving a jelly roll. Adv. Funct. Mater. 18, 3469–3477 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ruijie, X. et al. Rolling 2D bioelectronic film into 1D: a suturable long-term implantable soft microfiber. Preprint at bioRxiv https://doi.org/10.1002/adma.202408154 (2023).

  • Liu, Y. et al. A high-density 1,024-channel probe for brain-wide recordings in non-human primates. Nat. Neurosci. 27, 1620–1631 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khatib, M. et al. Spiral NeuroString: high-density soft bioelectronic fibers for multimodal sensing and stimulation. Preprint at bioRxiv https://doi.org/10.1101/2023.10.02.560482 (2023).

  • Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nan, K. et al. Mucosa-interfacing electronics. Nat. Rev. Mater. 7, 908–925 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steiger, C. et al. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4, 83–98 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pannala, R. et al. Devices for esophageal function testing. VideoGIE 7, 1–20 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Scholz, S., Sood, V. & Sharbaugh, E. in The SAGES Manual of Physiologic Evaluation of Foregut Diseases (eds Patel, A. D. et al.) 591–624 (Springer, 2023).

  • Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Salimi-Jazi, F. et al. Perioperative gastrointestinal myoelectric activity measurement using wireless external patches. J. Surg. Res. 302, 186–199 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Dubrovsky, G. et al. Intestinal electrical stimulation to increase the rate of peristalsis. J. Surg. Res. 236, 153–158 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Southwell, B. R. Electro-neuromodulation for colonic disorders—review of meta-analyses, systematic reviews, and RCTs. Neuromodulation 23, 1061–1081 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc. Natl Acad. Sci. USA 117, 14769–14778 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, T. et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22, 895–902 (2023).

  • Tchoe, Y. et al. Human brain mapping with multithousand-channel PtNRGrids resolves spatiotemporal dynamics. Sci. Transl. Med. 14, eabj1441 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viswam, V., Obien, M. E. J., Franke, F., Frey, U. & Hierlemann, A. Optimal electrode size for multi-scale extracellular-potential recording from neuronal assemblies. Front. Neurosci. 13, 385 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boehler, C., Carli, S., Fadiga, L., Stieglitz, T. & Asplund, M. Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nat. Protoc. 15, 3557–3578 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, E. T. et al. A CMOS-based highly scalable flexible neural electrode interface. Sci. Adv. 9, eadf9524 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Won, C. et al. Mechanically tissue‐like and highly conductive au nanoparticles embedded elastomeric fiber electrodes of brain–machine interfaces for chronic in vivo brain neural recording. Adv. Funct. Mater. 32, 2205145 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Le Floch, P. et al. 3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers. Nat. Nanotechnol. 19, 319–329 (2023).

  • Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, Z. J. et al. Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomater. 53, 46–58 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joo, H. R. & Frank, L. M. The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat. Rev. Neurosci. 19, 744–757 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. D., Huh, J. H., Kim, E. Y. & Park, C. C. Comparison of properties of thermoplastic polyurethane elastomers with two different soft segments. J. Appl. Polym. Sci. 69, 1349–1355 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashemi, P., Dankoski, E. C., Petrovic, J., Keithley, R. B. & Wightman, R. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal. Chem. 81, 9462–9471 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Khatib, M., Zohar, O., Saliba, W. & Haick, H. A multifunctional electronic skin empowered with damage mapping and autonomic acceleration of self‐healing in designated locations. Adv. Mater. 32, 2000246 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Guinovart, T., Crespo, G. A., Rius, F. X. & Andrade, F. J. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements. Anal. Chim. Acta 821, 72–80 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, S. Y. et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl. Mater. Interfaces 10, 13729–13740 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swaminathan, M. et al. Video imaging and spatiotemporal maps to analyze gastrointestinal motility in mice. J. Vis. Exp. 108, e53828 (2016).

  • Patel, B. Electroanalytical approaches to study signaling mechanisms in the gastrointestinal tract. Neurogastroenterol. Motility 23, 595–605 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Marcelli, G. & Patel, B. A. Understanding changes in uptake and release of serotonin from gastrointestinal tissue using a novel electroanalytical approach. Analyst 135, 2340–2347 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pachitariu, M., Steinmetz, N. A., Kadir, S. N., Carandini, M. & Harris, K. D. Fast and accurate spike sorting of high-channel count probes with KiloSort. Adv. Neural Inf. Process. Syst. 29, 2199 (2016).

  • Buccino, A. P. et al. SpikeInterface, a unified framework for spike sorting. eLife 9, e61834 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, D. N., Mehta, S. B. & Kleinfeld, D. Quality metrics to accompany spike sorting of extracellular signals. J. Neurosci. 31, 8699–8705 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez, A. & Giocomo, L. M. Parahippocampal neurons encode task-relevant information for goal-directed navigation. eLife 12, RP85646 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, E. A., Gillespie, A. K., Yoon, S. Y., Frank, L. M. & Huang, Y. Early hippocampal sharp-wave ripple deficits predict later learning and memory impairments in an Alzheimer’s disease mouse model. Cell Rep. 29, 2123–2133.e2124 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4, 159–171 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kessing, B. F., Weijenborg, P. W., Smout, A. J., Hillenius, S. & Bredenoord, A. J. Water-perfused esophageal high-resolution manometry: normal values and validation. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G491–G495 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, K., Duan, L.-p., Ge, Y., Xia, Z.-w. & Xu, Z.-j. A comparative study of 22-channel water-perfusion system and solid-state system with 36-sensors in esophageal manometry. BMC Gastroenterol. 12, 157 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liem, O. et al. Solid‐state vs water‐perfused catheters to measure colonic high‐amplitude propagating contractions. Neurogastroenterol. Motility 24, 345–e167 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Rasijeff, A. M., Withers, M., Burke, J. M., Jackson, W. & Scott, S. M. High‐resolution anorectal manometry: a comparison of solid‐state and water‐perfused catheters. Neurogastroenterol. Motility 29, e13124 (2017).

    Article 

    Google Scholar
     

  • Koppen, I. et al. Motility of the left colon in children and adolescents with functional constpation; a retrospective comparison between solid‐state and water‐perfused colonic manometry. Neurogastroenterol. Motility 30, e13401 (2018).

    Article 
    CAS 

    Google Scholar
     

  • de Leon, A., Thörn, S.-E. & Wattwil, M. High-resolution solid-state manometry of the upper and lower esophageal sphincters during anesthesia induction: a comparison between obese and non-obese patients. Anesth. Analg. 111, 149–153 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Corsetti, M. et al. Pan-colonic pressurizations associated with relaxation of the anal sphincter in health and disease: a new colonic motor pattern identified using high-resolution manometry. Am. J. Gastroenterol. 112, 479–489 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, T. H. & Bharucha, A. E. How to perform and interpret a high-resolution anorectal manometry test. J. Neurogastroenterol. Motility 22, 46 (2016).

    Article 

    Google Scholar
     

  • Arkwright, J. et al. In-vivo demonstration of a high resolution optical fiber manometry catheter for diagnosis of gastrointestinal motility disorders. Opt. Express 17, 4500–4508 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arkwright, J. W. et al. Design of a high-sensor count fibre optic manometry catheter for in-vivo colonic diagnostics. Opt. Express 17, 22423–22431 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dinning, P. et al. Low‐resolution colonic manometry leads to a gross misinterpretation of the frequency and polarity of propagating sequences: initial results from fiber‐optic high‐resolution manometry studies. Neurogastroenterol. Motility 25, e640–e649 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dinning, P. et al. Quantification of in vivo colonic motor patterns in healthy humans before and after a meal revealed by high‐resolution fiber‐optic manometry. Neurogastroenterol. Motility 26, 1443–1457 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Racz, R. R. et al. jULIEs: nanostructured polytrodes for low traumatic extracellular recordings and stimulation in the mammalian brain. J. Neural Eng. 19, 016041 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lee, S. H. et al. Scalable thousand channel penetrating microneedle arrays on flex for multimodal and large area coverage brainmachine interfaces. Adv. Funct. Mater. 32, 2112045 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raducanu, B. C. et al. Time multiplexed active neural probe with 1356 parallel recording sites. Sensors 17, 2388 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woeppel, K. et al. Explant analysis of Utah electrode arrays implanted in human cortex for brain–computer-interfaces. Front. Bioeng. Biotechnol. 9, 1137 (2021).

    Article 

    Google Scholar
     

  • Obaid, A. et al. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci. Adv. 6, eaay2789 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahasrabuddhe, K. et al. The Argo: a high channel count recording system for neural recording in vivo. J. Neural Eng. 18, 015002 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, P. R. et al. Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J. Neural Eng. 13, 066002 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, P. R. et al. High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. J. Neural Eng. 17, 056029 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wei, X. et al. Nanofabricated ultraflexible electrode arrays for high‐density intracortical recording. Adv. Sci. 5, 1700625 (2018).

    Article 

    Google Scholar
     

  • Zhao, S. et al. Tracking neural activity from the same cells during the entire adult life of mice. Nat. Neurosci. 26, 696–710 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z. et al. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents. Nat. Biomed. Eng. 7, 520–532 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Middya, S. et al. Multishank thin‐film neural probes and implantation system for high‐resolution neural recording applications. Adv. Electron. Mater. 9, 2200883 (2022).

  • Park, S. et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat. Commun. 12, 3435 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, K. et al. Flexible, scalable, high channel count stereo-electrode for recording in the human brain. Nat. Commun. 15, 218 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, S. et al. Elastocapillary self-assembled neurotassels for stable neural activity recordings. Sci. Adv. 5, eaav2842 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, J. E. et al. High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays. Neuron 101, 21–31.e25 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Musk, E. An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments