Jacquier, N. M. A. et al. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat. Plants 6, 610–619 (2020).
Fujita, M. K., Singhal, S., Brunes, T. O. & Maldonado, J. A. Evolutionary dynamics and consequences of parthenogenesis in vertebrates. Annu. Rev. Ecol. Evol. Syst. 51, 191–214 (2020).
Darwin, C. The Different Forms of Flowers on Plants of the Same Species (D. Appleton, 1897).
Hojsgaard, D. & Hörandl, E. The rise of apomixis in natural plant populations. Front. Plant Sci. 10, 436713 (2019).
Majeský, Ľ., Vašut, R. J., Kitner, M. & Trávníček, B. The pattern of genetic variability in apomictic clones of Taraxacum officinale indicates the alternation of asexual and sexual histories of apomicts. PLoS ONE https://doi.org/10.1371/journal.pone.0041868 (2012).
Khanday, I., Skinner, D., Yang, B., Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95 (2019).
Underwood, C. J. et al. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat. Genet. 54, 84–93 (2022).
Fu, J. et al. Integration of genomic selection with doubled-haploid evaluation in hybrid breeding: from GS 1.0 to GS 4.0 and beyond. Mol. Plant 15, 577–580 (2022).
Kelliher, T. et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542, 105–109 (2017).
Liu, C. et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol. Plant 10, 520–522 (2017).
Gilles, L. M. et al. Loss of pollen‐specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J. 36, 707–717 (2017).
Chaikam, V. et al. Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor. Appl. Genet. 128, 159–171 (2015).
Sunflowerseed Explorer. USDA Foreign Agriculture Service https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2224000 (2024).
Jiang, C. et al. A reactive oxygen species burst causes haploid induction in maize. Mol. Plant 15, 943–955 (2022).
Leclercq, P. Une stérilité mâle cytoplasmique chez le Tournesol. In Annales de l’Amélioration des Plantes (ĽInstitut National de la Recherche Agronomique, 1969).
Bracey, M. H., Hanson, M. A., Masuda, K. R., Stevens, R. C. & Cravatt, B. F. Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science 298, 1793–1796 (2002).
Newcomb, W. The development of the embryo sac of sunflower Helianthus annuus after fertilization. Can. J. Bot. 51, 879–890 (1973).
Miller, J. & Fick, G. Adaptation of reciprocal full‐sib selection in sunflower breeding using gibberellic acid induced male sterility 1. Crop Sci. 18, 161–162 (1978).
Wang, H., Hou, H., Jan, C. C. & Chao, W. S. Irradiated pollen-induced oarthenogenesis for doubled haploid oroduction in sunflowers (Helianthus spp.). Plants 12, 2430 (2023).
Laurie, D. & Bennett, M. Early post-pollination events in hexaploid wheat × maize crosses. Sexual Plant Reprod. 3, 70–76 (1990).
Patial, M., Pal, D., Thakur, A., Bana, R. S. & Patial, S. Doubled haploidy techniques in wheat (Triticum aestivum L.): an overview. Proc. Natl Acad. Sci. USA 89, 27–41 (2019).
Dordas, C. Foliar boron application improves seed set, seed yield, and seed quality of alfalfa. Agron. J. 98, 907–913 (2006).
Xin, P., Li, B., Zhang, H. & Hu, J. Optimization and control of the light environment for greenhouse crop production. Sci. Rep. 9, 8650 (2019).
Rieu, I., Twell, D. & Firon, N. Pollen development at high temperature: from acclimation to collapse. Plant Physiol. 173, 1967–1976 (2017).
Cashmore, A. R., Jarillo, J. A., Wu, Y.-J. & Liu, D. Cryptochromes: blue light receptors for plants and animals. Science 284, 760–765 (1999).
Melchinger, A. E., Molenaar, W. S., Mirdita, V. & Schipprack, W. Colchicine alternatives for chromosome doubling in maize haploids for doubled‐haploid production. Crop Sci. 56, 559–569 (2016).
Blakeslee, A. F. & Avery, A. G. Methods of inducing doubling of chromosomes in plants: by treatment with colchicine. J. Hered. https://doi.org/10.1093/oxfordjournals.jhered.a104294 (1937).
Hardham, A. & Gunning, B. Structure of cortical microtubule arrays in plant cells. J. Cell Biol. 77, 14–34 (1978).
Manzoor, A., Ahmad, T., Bashir, M. A., Hafiz, I. A. & Silvestri, C. Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants 8, 194 (2019).
Verdeil, J.-L., Alemanno, L., Niemenak, N. & Tranbarger, T. J. Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci. 12, 245–252 (2007).
Yu, J.-K. Advanced breeding technologies for accelerating genetic gain. Plant Breed. Biotechnol. 8, 203–210 (2020).
Yao, L. et al. OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants 4, 530–533 (2018).
Lv, J. et al. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat. Biotechnol. 38, 1397–1401 (2020).
Wang, N., Gent, J. I. & Dawe, R. K. Haploid induction by a maize cenh3 null mutant. Sci. Adv. 7, eabe2299 (2021).
Zhong, Y. et al. In vivo maternal haploid induction in tomato. Plant Biotechnol. J. 20, 250–252 (2022).
Rao, K. S. & Rohini, V. Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.): a simple protocol. Ann. Bot. 83, 347–354 (1999).
Qu, Y. et al. Mapping of QTL for kernel abortion caused by in vivo haploid induction in maize (Zea mays L.). PLoS ONE 15, e0228411 (2020).
Shen, K., Qu, M. & Zhao, P. The roads to haploid embryogenesis. Plants 12, 243 (2023).
Lv, J. & Kelliher, T. Recent advances in engineering of in vivo haploid induction systems. Methods Mol. Biol. 2653, 365–383 (2023).
Ferrie, A. & Caswell, K. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss. Org. Cult. 104, 301–309 (2011).
Todorova, M., Ivanov, P., Shindrova, P., Christov, M. & Ivanova, I. Doubled haploid production of sunflower (Helianthus annuus L.) through irradiated pollen-induced parthenogenesis. Euphytica 97, 249–254 (1997).
Davis, G. L. The life history of Podolepis jaceoides (Sims) Voss-II. Megasporogenesis, female gametophyte and embryogeny. Phytomorphology 11, 206–219 (1961).
Cyprys, P., Lindemeier, M. & Sprunck, S. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. Nat. Plants 5, 253–257 (2019).
Kallamadi, P. R. & Mulpuri, S. Ploidy analysis of Helianthus species by flow cytometry and its use in hybridity confirmation. Nucleus 59, 123–130 (2016).
Garcés, R. et al. Characterization of sunflower seed and oil wax ester composition by GC/MS, a final evaluation. LWT 173, 114365 (2023).
Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).
Silverman, B. W. Density Estimation for Statistics and Data Analysis (Routledge, 2018).
Duncan, K. E., Czymmek, K. J., Jiang, N., Thies, A. C. & Topp, C. N. X-ray microscopy enables multiscale high-resolution 3D imaging of plant cells, tissues, and organs. Plant Physiol. 188, 831–845 (2022).
Deng, J. et al. Concept and methodology of characterising infrared radiative performance of urban trees using tree crown spectroscopy. Build. Environ. 157, 380–390 (2019).
Aznar‐Moreno, J. A. et al. Sunflower (Helianthus annuus) long‐chain acyl‐coenzyme A synthetases expressed at high levels in developing seeds. Physiol. Plant. 150, 363–373 (2014).