Sunday, March 30, 2025
No menu items!
HomeNatureGlutamate gating of AMPA-subtype iGluRs at physiological temperatures

Glutamate gating of AMPA-subtype iGluRs at physiological temperatures

  • Hansen, K. B. et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 73, 298–487 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Twomey, E. C. & Sobolevsky, A. I. Structural mechanisms of gating in ionotropic glutamate receptors. Biochemistry 57, 267–276 (2018).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Diering, G. H. & Huganir, R. L. The AMPA receptor code of synaptic plasticity. Neuron 100, 314–329 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Twomey, E. C., Yelshanskaya, M. V. & Sobolevsky, A. I. Structural and functional insights into transmembrane AMPA receptor regulatory protein complexes. J. Gen. Physiol. 151, 1347–1356 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomita, S. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005).

    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Yelshanskaya, M. V., Patel, D. S., Kottke, C. M., Kurnikova, M. G. & Sobolevsky, A. I. Opening of glutamate receptor channel to subconductance levels. Nature 605, 172–178 (2022).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Shahi, K. & Baudry, M. Increasing binding affinity of agonists to glutamate receptors increases synaptic responses at glutamatergic synapses. Proc. Natl Acad. Sci. USA 89, 6881–6885 (1992).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Tocco, G., Massicotte, G., Standley, S., Thompson, R. F. & Baudry, M. Effect of temperature and calcium on the binding properties of the AMPA receptor in frozen rat brain sections. Eur. J. Neurosci. 4, 1093–1103 (1992).

    PubMed 

    Google Scholar
     

  • Postlethwaite, M., Hennig, M. H., Steinert, J. R., Graham, B. P. & Forsythe, I. D. Acceleration of AMPA receptor kinetics underlies temperature-dependent changes in synaptic strength at the rat calyx of Held. J. Physiol. 579, 69–84 (2007).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 549, 60–65 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Twomey, E. C., Yelshanskaya, M. V., Vassilevski, A. A. & Sobolevsky, A. I. Mechanisms of channel block in calcium-permeable AMPA receptors. Neuron 99, 956–968.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Elucidation of AMPA receptor-stargazin complexes by cryo-electron microscopy. Science 353, 83–86 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hale, W. D. et al. Allosteric competition and inhibition in AMPA receptors. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01328-0 (2024).

  • Shelley, C., Farrant, M. & Cull-Candy, S. G. TARP-associated AMPA receptors display an increased maximum channel conductance and multiple kinetically distinct open states. J. Physiol. 590, 5723–5738 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Unitary properties of AMPA receptors with reduced desensitization. Biophys. J. 113, 2218–2235 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Carrillo, E., Bhatia, N. K., Akimzhanov, A. M. & Jayaraman, V. Activity dependent inhibition of AMPA receptors by Zn2+. J. Neurosci. 40, 8629–8636 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korinek, M., Sedlacek, M., Cais, O., Dittert, I. & Vyklicky, L. Temperature dependence of N-methyl-d-aspartate receptor channels and N-methyl-d-aspartate receptor excitatory postsynaptic currents. Neuroscience 165, 736–748 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Milburn, T., Saint, D. A. & Chung, S. H. The temperature dependence of conductance of the sodium channel: implications for mechanisms of ion permeation. Recept. Channels 3, 201–211 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoffmann, H. M. & Dionne, V. E. Temperature dependence of ion permeation at the endplate channel. J. Gen. Physiol. 81, 687–703 (1983).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jiang, Y., Idikuda, V., Chowdhury, S. & Chanda, B. Activation of the archaeal ion channel MthK is exquisitely regulated by temperature. eLife https://elifesciences.org/articles/59055 (2020).

  • Kufel, D. S. & Wojcik, G. M. Analytical modelling of temperature effects on an AMPA-type synapse. J. Comput. Neurosci. 44, 379–391 (2018).

    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Singh, A. K. et al. Structural basis of temperature sensation by the TRP channel TRPV3. Nat. Struct. Mol. Biol. 26, 994–998 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nadezhdin, K. D. et al. Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nat. Struct. Mol. Biol. 28, 564–572 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kwon, D. H. et al. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol. 28, 554–563 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hu, J. et al. Physiological temperature drives TRPM4 ligand recognition and gating. Nature 630, 509–515 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Chen, C.-Y., Chang, Y.-C., Lin, B.-L., Huang, C.-H. & Tsai, M.-D. Temperature-resolved cryo-EM uncovers structural bases of temperature-dependent enzyme functions. J. Am. Chem. Soc. 141, 19983–19987 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Bansia, H. et al. Investigating gating mechanisms of ion channels using temperature-resolved cryoEM. Microsc. Microanal. 27, 1690–1694 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Horning, M. S. & Mayer, M. L. Regulation of AMPA receptor gating by ligand binding core dimers. Neuron 41, 379–388 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Armstrong, N., Jasti, J., Beich-Frandsen, M. & Gouaux, E. Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell 127, 85–97 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Zuo, J. et al. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388, 769–773 (1997).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wollmuth, L. P. et al. The Lurcher mutation identifies δ2 as an AMPA/kainate receptor-like channel that is potentiated by Ca2+. J. Neurosci. 20, 5973–5980 (2000).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Schwarz, M. K. et al. Dominance of the lurcher mutation in heteromeric kainate and AMPA receptor channels. Eur. J. Neurosci. 14, 861–868 (2001).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Taverna, F. et al. The Lurcher mutation of an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit enhances potency of glutamate and converts an antagonist to an agonist. J. Biol. Chem. 275, 8475–8479 (2000).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kohda, K., Wang, Y. & Yuzaki, M. Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nat. Neurosci. 3, 315–322 (2000).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gangwar, S. P. et al. Kainate receptor channel opening and gating mechanism. Nature 630, 762–768 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Sobolevsky, A. I., Yelshansky, M. V. & Wollmuth, L. P. The outer pore of the glutamate receptor channel has 2-fold rotational symmetry. Neuron 41, 367–378 (2004).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wollmuth, L. P. & Sobolevsky, A. I. Structure and gating of the glutamate receptor ion channel. Trends Neurosci. 27, 321–328 (2004).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bowie, D. Ionotropic glutamate receptors & CNS disorders. CNS Neurol. Disord. Drug Targets 7, 129–143 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huettner, J. E. Glutamate receptor pores. J. Physiol. 593, 49–59 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Patneau, D., Vyklicky, L. & Mayer, M. Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J. Neurosci. 13, 3496–3509 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y. et al. Mechanism of glutamate receptor desensitization. Nature 417, 245–253 (2002).

    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Stern-Bach, Y., Russo, S., Neuman, M. & Rosenmund, C. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 21, 907–918 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Klykov, O., Gangwar, S. P., Yelshanskaya, M. V., Yen, L. & Sobolevsky, A. I. Structure and desensitization of AMPA receptor complexes with type II TARP γ5 and GSG1L. Mol Cell 81, 4771–4783.e7 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Amin, J. B. et al. Two gates mediate NMDA receptor activity and are under subunit-specific regulation. Nat. Commun. 14, 1623 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Amin, J. B., Leng, X., Gochman, A., Zhou, H.-X. & Wollmuth, L. P. A conserved glycine harboring disease-associated mutations permits NMDA receptor slow deactivation and high Ca2+ permeability. Nat. Commun. 9, 3748 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Salpietro, V. et al. AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat. Commun. 10, 3094 (2019).

    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Carrillo, E. et al. Memantine inhibits calcium-permeable AMPA receptors. Preprint at bioRxiv https://doi.org/10.1101/2024.07.02.601784 (2024).

  • Yelshanskaya, M. V. et al. Structural bases of noncompetitive inhibition of AMPA-subtype ionotropic glutamate receptors by antiepileptic drugs. Neuron 91, 1305–1315 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou, T.-H. et al. Molecular mechanism of ligand gating and opening of NMDA receptor. Nature 632, 209–217 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhao, Y., Chen, S., Swensen, A. C., Qian, W.-J. & Gouaux, E. Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science 364, 355–362 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Zhang, D. et al. Structural mobility tunes signalling of the GluA1 AMPA glutamate receptor. Nature https://doi.org/10.1038/s41586-023-06528-0 (2023).

  • Ivica, J. et al. Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization. Nat. Struct. Mol. Biol. 31, 1601–1613 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Prieto, M. L. & Wollmuth, L. P. Gating modes in AMPA receptors. J. Neurosci. 30, 4449–4459 (2010).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Carbone, A. L. & Plested, A. J. R. Superactivation of AMPA receptors by auxiliary proteins. Nat. Commun. 7, 10178 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Structural bases of desensitization in AMPA receptor-auxiliary subunit complexes. Neuron 94, 569–580.e5 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hale, W. D. et al. Structure of transmembrane AMPA receptor regulatory protein subunit γ2. Nat. Commun. 16, 671 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yelshanskaya, M. V., Li, M. & Sobolevsky, A. I. Structure of an agonist-bound ionotropic glutamate receptor. Science 345, 1070–1074 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Qin, F. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys. J. 86, 1488–1501 (2004).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Nicolai, C. & Sachs, F. Solving ion channel kinetics with the qub software. Biophys. Rev. Lett. 08, 191–211 (2013).

    MATH 

    Google Scholar
     

  • Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Russo, C. J. & Passmore, L. A. Ultrastable gold substrates for electron cryomicroscopy. Science 346, 1377–1380 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Cryst. D 60, 2126–2132 (2004).

    MATH 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Cryst. D 75, 861–877 (2019).

    CAS 
    MATH 

    Google Scholar
     

  • Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).

    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graphics 14, 354–360 (1996).

    CAS 

    Google Scholar
     

  • Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments