Smith, D. E., Harrison, S., Firth, C. R. & Jordan, J. T. The early Holocene sea level rise. Quat. Sci. Rev. 30, 1846–1860 (2011).
Khan, N. S. et al. Inception of a global atlas of sea levels since the Last Glacial Maximum. Quat. Sci. Rev. 220, 359–371 (2019).
Cohen, K. M. & Hijma, M. P. in Doggerland. Lost World under the North Sea (eds Amkreutz, L. W. S. W. & Van der Vaart-Verschoof, S.) 31–35 (Sidestone Press, 2022).
Gaffney, V., Fitch, S. & Smith, D. Europe’s Lost World: the Rediscovery of Doggerland (Council for British Archeology, 2009).
Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (IPCC, Cambridge Univ. Press, 2023).
Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 383–464 (IPCC, Cambridge Univ. Press, 2013).
Kaufman, D. S. & Broadman, E. Revisiting the Holocene global temperature conundrum. Nature 614, 425–435 (2023).
Dalton, A. S. et al. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quat. Sci. Rev. 234, 106223 (2020).
Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).
Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE‐6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).
Ullman, D. J., Carlson, A. E., Anslow, F. S., LeGrande, A. N. & Licciardi, J. M. Laurentide ice-sheet instability during the last deglaciation. Nat. Geosci. 8, 534–537 (2015).
Pittard, M. L., Whitehouse, P. L., Bentley, M. J. & Small, D. An ensemble of Antarctic deglacial simulations constrained by geological observations. Quat. Sci. Rev. 298, 107800 (2022).
Carlson, A. E. & Clark, P. U. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys. https://doi.org/10.1029/2011RG000371 (2012).
Bradley, S. L., Ely, J. C., Clark, C. D., Edwards, R. J. & Shennan, I. Reconstruction of the palaeo-sea level of Britain and Ireland arising from empirical constraints of ice extent: implications for regional sea level forecasts and North American ice sheet volume. J. Quat. Sci. 38, 791–805 (2023).
Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).
Shennan, I., Long, A. J. & Horton, B. P. (eds) Handbook of Sea-Level Research (Wiley/AGU, 2015).
Hanebuth, T., Stattegger, K. & Grootes, P. M. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288, 1033–1035 (2000).
Khan, N. S. et al. Drivers of Holocene sea-level change in the Caribbean. Quat. Sci. Rev. 155, 13–36 (2017).
Bard, E., Hamelin, B. & Delanghe-Sabatier, D. Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. Science 327, 1235–1237 (2010).
Hibbert, F. D. et al. Coral indicators of past sea-level change: a global repository of U-series dated benchmarks. Quat. Sci. Rev. 145, 1–56 (2016).
Shennan, I., Bradley, S. L. & Edwards, R. Relative sea-level changes and crustal movements in Britain and Ireland since the Last Glacial Maximum. Quat. Sci. Rev. 188, 143–159 (2018).
Chua, S. et al. A new Holocene sea-level record for Singapore. Holocene 31, 1376–1390 (2021).
Kiden, P., Denys, L. & Johnston, P. Late Quaternary sea-level change and isostatic and tectonic land movement along the Belgian–Dutch North Sea coast: geological data and model results. J. Quat. Sci. 17, 535–546 (2002).
Steffen, H. & Wu, P. Glacial isostatic adjustment in Fennoscandia—a review of data and modeling. J. Geodyn. 52, 169–204 (2011).
Vink, A., Steffen, H., Reinhardt, L. & Kaufmann, G. Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea). Quat. Sci. Rev. 26, 3249–3275 (2007).
Eaton, S., Barlow, N. L. M., Hodgson, D. M., Mellett, C. L. & Emery, A. R. Landscape evolution during Holocene transgression of a mid-latitude low-relief coastal plain: the southern North Sea. Earth Surf. Process. Landf. 49, 3139–3157 (2024).
Shennan, I. et al. Modelling western North Sea palaeogeographies and tidal changes during the Holocene. Geol. Soc. Lond. Spec. Publ. 166, 299–319 (2000).
Love, R. et al. The contribution of glacial isostatic adjustment to projections of sea-level change along the Atlantic and Gulf coasts of North America. Earths Future 4, 440–464 (2016).
Spada, G. & Melini, D. New estimates of ongoing sea level change and land movements caused by glacial isostatic adjustment in the Mediterranean region. Geophys. J. Int. 229, 984–998 (2021).
Vermeersen, B. L. A. et al. Sea-level change in the Dutch Wadden Sea. Neth. J. Geosci. 97, 79–127 (2018).
Van de Wal, R. S. W. et al. A high-end estimate of sea level rise for practitioners. Earths Future 10, e2022EF002751 (2022).
Hijma, M. P. & Cohen, K. M. Holocene sea-level database for the Rhine-Meuse Delta, The Netherlands: implications for the pre-8.2 ka sea-level jump. Quat. Sci. Rev. 214, 68–86 (2019).
Ward, S. L., Neill, S. P., Scourse, J. D., Bradley, S. L. & Uehara, K. Sensitivity of palaeotidal models of the northwest European shelf seas to glacial isostatic adjustment since the Last Glacial Maximum. Quat. Sci. Rev. 151, 198–211 (2016).
Creel, R. C. et al. Global mean sea level likely higher than present during the holocene. Nat. Commun. https://doi.org/10.1038/s41467-024-54535-0 (2024).
Solomina, O. N. et al. Holocene glacier fluctuations. Quat. Sci. Rev. 111, 9–34 (2015).
Gangadharan, N. et al. Process-based estimate of global-mean sea-level changes in the Common Era. Earth Syst. Dyn. 13, 1417–1435 (2022).
Cahill, N., Kemp, A. C., Horton, B. P. & Parnell, A. C. A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change. Clim. Past 12, 525–542 (2016).
Cahill, N., Kemp, A. C., Horton, B. P. & Parnell, A. C. Modeling sea-level change using errors-in-variables integrated Gaussian processes. Ann. Appl. Stat. 9, 547–571 (2015).
Brouard, E., Roy, M., Godbout, P.-M. & Veillette, J. J. A framework for the timing of the final meltwater outbursts from glacial Lake Agassiz–Ojibway. Quat. Sci. Rev. 274, 107269 (2021).
Rush, G. et al. The magnitude and source of meltwater forcing of the 8.2 ka climate event constrained by relative sea-level data from eastern Scotland. Quat. Sci. Adv. 12, 100119 (2023).
Leverington, D. W., Mann, J. D. & Teller, J. T. Changes in the bathymetry and volume of glacial Lake Agassiz between 9,200 and 7,700 14C yr bp. Quat. Res. 57, 244–252 (2002).
You, D. et al. Last deglacial abrupt climate changes caused by meltwater pulses in the Labrador Sea. Commun. Earth Environ. 4, 81 (2023).
Lin, Y. et al. A reconciled solution of meltwater pulse 1A sources using sea-level fingerprinting. Nat. Commun. 12, 2015 (2021).
Mackintosh, A. et al. Retreat of the East Antarctic ice sheet during the last glacial termination. Nat. Geosci. 4, 195–202 (2011).
Golledge, N. R. et al. Retreat of the Antarctic Ice Sheet during the last interglaciation and implications for future change. Geophys. Res. Lett. 48, e2021GL094513 (2021).
Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1–45 (2016).
Patton, H. et al. Deglaciation of the Eurasian ice sheet complex. Quat. Sci. Rev. 169, 148–172 (2017).
Cuzzone, J. K. et al. Final deglaciation of the Scandinavian Ice Sheet and implications for the Holocene global sea-level budget. Earth Planet. Sci. Lett. 448, 34–41 (2016).
Hijma, M. P. et al. Global sea-level rise in the early Holocene revealed from North Sea peats: supplementary information. Zenodo https://doi.org/10.5281/zenodo.10801302 (2025).
Walker, J. S., Kopp, R. E., Little, C. M. & Horton, B. P. Timing of emergence of modern rates of sea-level rise by 1863. Nat. Commun. 13, 966 (2022).
Walker, J. S. et al. Common Era sea-level budgets along the U.S. Atlantic coast. Nat. Commun. 12, 1841 (2021).
DINOloket (Internet Portal for Geo-Information) (TNO, 2024); https://www.dinoloket.nl/en.
Niedersächsischen Bodeninformationssystems (NIBIS, 2024); https://nibis.lbeg.de/cardomap3/?TH=PROFILBKBOHRSEBOHRGEBOHRHYBOHRIGBOHR1447599.
Reinhardt, L. & Vink, A. RV Celtic Explorer North Sea Cruise 2009—Geology and Geophysics Geopotenzial Deutsche Nordsee Project BGR, LBEG and BSH Report (BGR, 2009).
Reinhardt, L. & Lutz, R. RV Celtic Explorer North Sea Cruise 2011—Geology and Geophysics Geopotenzial Deutsche Nordsee Project BGR, LBEG and BSH Report (BGR, 2011).
De Haas, H. North Sea Monitoring Texel—Texel, 16 June – 29 June 2017 NIOZ cruise report RV Pelagia cruise 64PE423 (2017).
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
Van Asselen, S. Peat Compaction in Deltas: Implications for Holocene Delta Evolution. PhD dissertation, Utrecht Univ. (2010).
Uehara, K., Scourse, J. D., Horsburgh, K. J., Lambeck, K. & Purcell, A. P. Tidal evolution of the northwest European shelf areas from the Last Glacial Maximum to the present. J. Geophys. Res. 111, C09025–C09025 (2006).
Van der Molen, J. & De Swart, H. E. Holocene tidal conditions and tide-induced sand transport in the southern North Sea. J. Geophys. Res. C 106, 9339–9362 (2001).
Van der Molen, J. & Van Dijck, B. The evolution of the Dutch and Belgian coasts and the role of sand supply from the North Sea. Glob. Planet. Change 27, 223–244 (2000).
Van de Plassche, O. Sea-level Change and Water-level Movements in The Netherlands during the Holocene PhD dissertation, Vrije Univ. (1982).
Van de Plassche, O. & Roep, T. B. in Late Quaternary Sea-level Correlation and Applications (eds Scott, D. B. et al.) 41–56 (Kluwer, 1989).
Cohen, K. M., Cartelle, V., Barnett, R., Busschers, F. S. & Barlow, N. L. M. Last Interglacial sea-level data points from Northwest Europe. Earth Syst. Sci. Data 14, 2895–2937 (2022).
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
Van de Plassche, O. in Sea-level Research: A Manual for the Collection and Evaluation of Data (ed. Van de Plassche O.) 1–26 (Geobooks, 1986).
Kendall, R. A., Mitrovica, J. X. & Milne, G. A. On post-glacial sea level—II. Numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int. 161, 679–706 (2005).
Milne, G. A. & Mitrovica, J. X. Postglacial sea-level change on a rotating Earth. Geophys. J. Int. 133, 1–19 (1998).
Mitrovica, J. X., Milne, G. A. & Davis, J. L. Glacial isostatic adjustment on a rotating earth. Geophys. J. Int. 147, 562–578 (2001).
Clark, C. D. et al. Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE-CHRONO reconstruction. Boreas 51, 699–758 (2022).
Gowan, E. J. et al. ICESHEET 1.0: a program to produce paleo-ice sheet reconstructions with minimal assumptions. Geosci. Model Dev. 9, 1673–1682 (2016).
Wu, P. Using commercial finite element packages for the study of Earth deformations, sea levels and the state of stress. Geophys. J. Int. 158, 401–408 (2004).
Blank, B., Barletta, V., Hu, H., Pappa, F. & van der Wal, W. Effect of lateral and stress-dependent viscosity variations on GIA induced uplift rates in the Amundsen Sea Embayment. Geochem. Geophys. Geosyst. 22, e2021GC009807 (2021).
NOAA National Geophysical Data Center. 2006: 2-minute gridded global relief data (etopo2) v2. NOAA National Centers for Environmental Information https://doi.org/10.7289/V5J1012Q (2023).
Ivins, E. R., Van der Wal, W., Wiens, D. A., Lloyd, A. J. & Caron, L. Antarctic upper mantle rheology. Geol. Soc. Lond. Mem. 56, 267–294 (2023).
Karato, S.-I. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth (Cambridge Univ. Press, 2008).
Wu, P., Wang, H. & Steffen, H. The role of thermal effect on mantle seismic anomalies under Laurentia and Fennoscandia from observations of glacial isostatic adjustment. Geophys. J. Int. 192, 7–17 (2012).
Hirth, G. & Kohlstedt, D. in Inside the Subduction Factory (ed. Eiler, J.) 83–105 (American Geophysical Union, 2004).
Lau, H. C. P. Transient rheology in sea level change: implications for meltwater pulse 1A. Earth Planet. Sci. Lett. 609, 118106 (2023).
Simon, K. M., Riva, R. E. M. & Broerse, T. Identifying geographical patterns of transient deformation in the geological sea level record. J. Geophys. Res. Solid Earth 127, e2021JB023693 (2022).
Fullea, J., Lebedev, S., Martinec, Z. & Celli, N. L. WINTERC-G: mapping the upper mantle thermochemical heterogeneity from coupled geophysical–petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data. Geophys. J. Int. 226, 146–191 (2021).
Wal, W. V. D. et al. Glacial isostatic adjustment model with composite 3-D Earth rheology for Fennoscandia. Geophys. J. Int. 194, 61–77 (2013).
Celli, N. L., Lebedev, S., Schaeffer, A. J. & Gaina, C. The tilted Iceland Plume and its effect on the North Atlantic evolution and magmatism. Earth Planet. Sci. Lett. 569, 117048 (2021).
Debayle, E., Dubuffet, F. & Durand, S. An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy. Geophys. Res. Lett. 43, 674–682 (2016).
Simms, A. R., Lisiecki, L., Gebbie, G., Whitehouse, P. L. & Clark, J. F. Balancing the last glacial maximum (LGM) sea-level budget. Quat. Sci. Rev. 205, 143–153 (2019).
Paterson, W. S. B. The Physics of Glaciers (Pergamon, 1994).
Ullman, D. J. et al. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change. Quat. Sci. Rev. 152, 49–59 (2016).
Dalton, A. S. et al. Deglaciation of the North American ice sheet complex in calendar years based on a comprehensive database of chronological data: NADI-1. Quat. Sci. Rev. 321, 108345 (2023).
Gowan, E. J. et al. A new global ice sheet reconstruction for the past 80 000 years. Nat. Commun. 12, 1199 (2021).
Milne, G. A., Gehrels, W. R., Hughes, C. W. & Tamisiea, M. E. Identifying the causes of sea-level change. Nat. Geosci. 2, 471–478 (2009).
Hijma, M. P. & Cohen, K. M. Timing and magnitude of the sea-level jump preluding the 8200 yr event. Geology 38, 275–278 (2010).
Törnqvist, T. E. & Hijma, M. P. Links between early Holocene ice-sheet decay, sea-level rise and abrupt climate change. Nat. Geosci. 5, 601–606 (2012).
Kendall, R. A., Mitrovica, J. X., Milne, G. A., Törnqvist, T. E. & Li, Y. The sea-level fingerprint of the 8.2 ka climate event. Geology 36, 423–426 (2008).
Argus, D. F., Peltier, W. R., Drummond, R. & Moore, A. W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int. 198, 537–563 (2014).
Hijma, M. P. et al. in Handbook of Sea-Level Research (eds Shennan, I. et al.) 536–553 (Wiley-Blackwell, 2015).
Alappat, L., Vink, A., Tsukamoto, S. & Frechen, M. Establishing the Late Pleistocene–Holocene sedimentation boundary in the southern North Sea using OSL dating of shallow continental shelf sediments. Proc. Geol. Assoc. 121, 43–54 (2010).
Baeteman, C., Waller, M. & Kiden, P. Reconstructing middle to late Holocene sea-level change: a methodological review with particular reference to ‘A new Holocene sea-level curve for the southern North Sea’ presented by K.-E. Behre. Boreas 40, 557–572 (2011).
Barckhausen, J. Geologische Karte von Niedersachsen 1:25000, Blatt 2609 Emden (NLfB Hannover, 1984).
Behre, K.-E. Eine neue Meeresspiegelkurve für die südliche Nordsee. Probleme der Küstenforschung im südlichen Nordseegebiet 28, 9–63 (2003).
Behre, K.-E. Die ursprüngliche Vegetation in den deutschen Marschgebieten und deren Veränderung durch prähistorische Besiedlung und Meeresspiegelbewegungen Vol. 13, 85–96 (Gesellschaft für Ökologie, 1985).
Behre, K.-E., Menke, B. & Streif, H. The quaternary geological development of the German part of the North Sea. Acta Univ. Ups. Symp. Univ. Ups. Annum Quingentesimum Celebrantis 2, 85–113 (1979).
Bos, I. J., Busschers, F. S. & Hoek, W. Z. Organic-facies determination: a key for understanding facies distribution in the basal peat layer of the Holocene Rhine–Meuse delta, The Netherlands. Sedimentology 59, 676–703 (2012).
Brain, M. J. et al. Modelling the effects of sediment compaction on salt marsh reconstructions of recent sea-level rise. Earth Planet. Sci. Lett. 345–348, 180–193 (2012).
Bungenstock, F., Freund, H. & Bartholomä, A. Holocene relative sea-level data for the East Frisian barrier coast, NW Germany, southern North Sea—CORRIGENDUM. Neth. J. Geosci. 101, e2 (2022).
Bungenstock, F., Freund, H. & Bartholomä, A. Holocene relative sea-level data for the East Frisian barrier coast, NW Germany, southern North Sea. Neth. J. Geosci. 100, e16 (2021).
Clerkx, A. P. P. M. et al. Broekbossen van Nederland IBN-Report 096 (Instituut voor Bos- en Natuuronderzoek, 1994).
Cohen, K. M. in River Deltas: Concepts, Models, and Examples SEPM Special Publication Vol. 83 (eds Giosan, L. & Bhattacharaya, J. P.) 341–364 (Society for Sedimentary Geology, 2005).
De Haas, T. et al. Holocene evolution of tidal systems in The Netherlands: effects of rivers, coastal boundary conditions, eco-engineering species, inherited relief and human interference. Earth Sci. Rev. 177, 139–163 (2018).
Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).
Nougues, L. Bodemdalingsmonitor 2022 Kustfundament en getijdenbekkens—Bodemdaling en GNSS-stations Deltares Report 11208035-003-ZKS-0004 (Deltares, 2022).
Hijma, M. P. & Van Onselen, E. Bodemdalingsmonitor 2019—Kustfundament en de getijdenbekkens Deltares Report 11203683-002-ZKS-0017 (Deltares, 2019).
Hijma, M. P., Cohen, K. M., Hoffmann, G., Van der Spek, A. J. F. & Stouthamer, E. From river valley to estuary: the evolution of the Rhine mouth in the early to middle Holocene (western Netherlands, Rhine-Meuse delta). Neth. J. Geosci. 88, 13–53 (2009).
Jelgersma, S. Holocene sea-level changes in The Netherlands. Mededelingen Geologische Stichting 7, 1–101 (1961).
Konradi, P. B. Biostratigraphy and environment of the Holocene marine transgression in the Heligoland Channel, North Sea. Bull. Geol. Soc. Den. 47, 71–79 (2000).
Kooi, H., Johnston, P., Lambeck, K., Smither, C. & Ronald, M. Geological causes of recent (~100 yr) vertical land movement in The Netherlands. Tectonophysics 299, 297–316 (1998).
Koster, K., De Lange, G., Harting, R., de Heer, E. & Middelkoop, H. Characterizing void ratio and compressibility of Holocene peat with CPT for assessing coastal–deltaic subsidence. Q. J. Eng. Geol. Hydrogeol. 51, 210 (2018).
Koster, K., Stafleu, J. & Cohen, K. M. Generic 3D interpolation of Holocene base-level rise and provision of accommodation space, developed for the Netherlands coastal plain and infilled palaeovalleys. Basin Res. 29, 775–797 (2017).
Krüger, S., Dörfler, W., Bennike, O. & Wolters, S. Life in Doggerland—palynological investigations of the environment of prehistoric hunter-gatherer societies in the North Sea Basin. E&G Quat. Sci. J. 66, 3–13 (2017).
Linke, G. Der Ablauf der holozänen Transgression der Nordsee aufgrund von Ergebnissen aus dem Gebiet Neuwerk/Scharhörn. Probleme der Küstenforschung im südlichen Nordseegebiet 14, 123–157 (1982).
Ludwig, G., Müller, H. & Streif, H. New dates on Holocene sealevel changes in the German Bight. Spec. Publ. Int. Assoc. Sediment. 5, 211–219 (1981).
Ludwig, G., Müller, H. & Streif, H. Neuere Datum zum holozänen Meeresspiegelanstieg im Bereich der Deutschen Bucht. Geol. Jahrb. D 32, 3–22 (1979).
Meijles, E. W. et al. Holocene relative mean sea-level changes in the Wadden Sea area, northern Netherlands. J. Quat. Sci. https://doi.org/10.1002/jqs.3068 (2018).
Makaske, B., Van Smeerdijk, D. G., Peeters, H., Mulder, J. R. & Spek, T. Relative water-level rise in the Flevo lagoon (The Netherlands), 5300–2000 cal. yr BC: an evaluation of new and existing basal peat time-depth data. Neth. J. Geosci. 82, 115–131 (2016).
Menke, B. Befunde und Überlegungen zum nacheiszeitlichen Meeresspiegelanstieg (Dithmarschen und Eiderstedt, Schleswig-Holstein). Probleme der Küstenforschung im südlichen Nordseegebiet 11, 145–161 (1976).
Menke, B. in Deutsche Beiträge zur Quartärforschung in der südlichen Nordsee Geologisches Jahrbuch Vol. A146 (ed. Streif, H.) 177–182 (Bundesanstalt für Geowissenschaften und Rohstoffe und den Staatlichen Geologischen Diensten in der Bundesrepublik Deutschland, 1996).
Oele, E. The Quaternary geology of the Dutch part of the North Sea, north of the Frisian Isles. Geol. Mijnbouw 48, 467–480 (1969).
Preuss, H. Die holozäne Entwicklung der Nordseeküste im Gebiet der östlichen Wesermarsch. Geol. Jahrb. 53, 1–89 (1979).
Reynaud, J.-Y. & Dalrymple, R. W. in Principles of Tidal Sedimentology (eds Davis, R. A. Jr & Dalrymple, R. W.) 335–369 (Springer, 2012).
Schaumann, R. M. et al. The Middle Pleistocene to early Holocene subsurface geology of the Norderney tidal basin: new insights from core data and high-resolution sub-bottom profiling (Central Wadden Sea, southern North Sea). Neth. J. Geosci. 100, e15 (2021).
Schlütz, F., Enters, D. & Bittmann, F. From dust till drowned: the Holocene landscape development at Norderney, East Frisian Islands. Neth. J. Geosci. 100, e7 (2021).
Shennan, I. et al. Holocene isostasy and relative sea-level changes on the east coast of England. Geol. Soc. Lond. Spec. Publ. 166, 275–298 (2000).
Streif, H. Geologische Karte von Niedersachsen 1:25 000, Blatt 2314 Hooksiel (NLfB Hannover, 1985).
Streif, H., Uffenorde, H. & Vinken, R. Untersuchungen zum pleistozänen und holozänen Trangressionsgeschehen im Bereich der südlichen Nordsee (Niedersächsisches Landesamt für Bodenforschung, 1983).
Törnqvist, T. E., van Ree, M. H. M., van ‘t Veer, R. & van Geel, B. Improving methodology for high-resolution reconstruction of sea-level rise and neotectonics by paleoecological analysis and AMS 14C dating of basal peats. Quat. Res. 49, 72–85 (1998).
Van Asselen, S., Cohen, K. M. & Stouthamer, E. The impact of avulsion on groundwater level and peat formation in delta floodbasins during the middle-Holocene transgression in the Rhine–Meuse delta, The Netherlands. Holocene 27, 1694–1706 (2017).
Van Asselen, S., Karssenberg, D. & Stouthamer, E. Contribution of peat compaction to relative sea-level rise within Holocene deltas. Geophys. Res. Lett. 38, L24401–L24401 (2011).
Van de Plassche, O. Evolution of the intra-coastal tidal range in the Rhine–Meuse delta and Flevo Lagoon, 5700–3000 yrs cal B.C. Mar. Geol. 124, 113–128 (1995).
Van de Plassche, O., Bohncke, S. J. P., Makaske, B. & Van der Plicht, J. Water-level changes in the Flevo area, central Netherlands (5300–1500 BC): implications for relative mean sea-level rise in the Western Netherlands. Quat. Int. 133-134, 77–93 (2005).
Van de Plassche, O., Makaske, B., Hoek, W. Z., Konert, M. & Van der Plicht, J. Mid-Holocene water-level changes in the lower Rhine–Meuse delta (western Netherlands): implications for the reconstruction of relative mean sea-level rise, palaeoriver-gradients and coastal evolution. Neth. J. Geosci. 89, 3–20 (2010).
Van der Spek, A. J. F. Large-scale Evolution of Holocene Tidal Basins in the Netherlands. PhD dissertation, Utrecht Univ. (1994).
Vis, G.-J. et al. in Handbook of Sea-Level Research (eds Shennan, I. et al.) 514–535 (Wiley-Blackwell, 2015).
Vos, P. C., Bunnik, F. P. M., Cohen, K. M. & Cremer, H. A staged geogenetic approach to underwater archaeological prospection in the Port of Rotterdam (Yangtzehaven, Maasvlakte, The Netherlands): a geological and palaeoenvironmental case study for local mapping of Mesolithic lowland landscapes. Quat. Int. 367, 4–31 (2015).
Wolters, S., Zeiler, M. & Bungenstock, F. Early Holocene environmental history of sunken landscapes: pollen, plant macrofossil and geochemical analyses from the Borkum Riffgrund, southern North Sea. Int. J. Earth Sci. 99, 1707–1719 (2010).
Bloemsma, M. Development of a Modelling Framework for Core Data Integration using XRF Scanning. PhD thesis, Delft Univ. Technology (2015).
Arfai, J. et al. Rapid Quaternary subsidence in the northwestern German North Sea. Sci. Rep. 8, 11524 (2018).
Cameron, T. D. J., Laban, C. & Schüttenhelm, R. T. E. Quaternary Geology. Sheet 52°N–2°E, Flemish Bight 1:250.000 Series (British Geological Survey, 1984).
Laban, C., Schüttenhelm, R. T. E., Balson, P. S., Baeteman, C. & Paepe, R. Quaternary Geology. Sheet 51°N–02°E, Ostend 1:250.000 Series (British Geological Survey, 1992).
Deckers, J. et al. Geologisch en hydrogeologisch 3D model van het Cenozoïcum van de Roerdalslenk in Zuidoost-Nederland en Vlaanderen (H3O-Roerdalslenk) TNO-Report 2014 R10799 / VITO-Report 2014/ETE/R/1 (TNO, 2014).
Teilmodell Quartär 3D. Bundesministerium für Wirtschaft und Technologie (BMWi), Niedersächsischen Ministerium für Wirtschaft, Arbeit und Verkehr, Bundesministerium für Verkehr, Bau und Stadtentwicklung (BMVBS) (GPDN, 2022); https://www.gpdn.de/.
Jakob, K. A. et al. A new sea-level record for the Neogene/Quaternary boundary reveals transition to a more stable East Antarctic Ice Sheet. Proc. Natl Acad. Sci. USA 117, 30980–30987 (2020).
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. & Oppenheimer, M. Probabilistic assessment of sea level during the last interglacial stage. Nature 462, 863–867 (2009).
Kuhlmann, G. et al. Chronostratigraphy of Late Neogene sediments in the southern North Sea Basin and paleoenvironmental interpretations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 426–455 (2006).
Kuhlmann, G. et al. Integrated chronostratigraphy of the Pliocene–Pleistocene interval and its relation to the regional stratigraphical stages in the southern North Sea region. Neth. J. Geosci. 85, 19–35 (2006).
Lamb, R. M., Harding, R., Huuse, M., Stewart, M. & Brocklehurst, S. H. The early Quaternary North Sea Basin. J. Geol. Soc. 175, 275–290 (2018).
Lambeck, K. et al. Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling. Boreas 35, 539–575 (2006).
Generalised Quarternary Geological Map of Lower Saxony, 1:500 000—Depth of the Quaternary Base (Landesambt für Bergbau, Energie und Geologie, 2022).
Nielsen, T., Mathiesen, A. & Bryde-Auken, M. Base Quaternary in the Danish parts of the North Sea and Skagerrak. GEUS Bull. 15, 37–40 (2008).
Patruno, S. et al. Upslope‐climbing shelf‐edge clinoforms and the stepwise evolution of the northern European glaciation (lower Pleistocene Eridanos Delta system, UK North Sea): when sediment supply overwhelms accommodation. Basin Res. 32, 224–239 (2020).
Rovere, A. et al. Documentation of the World Atlas of Last Interglacial Shorelines (WALIS). Zenodo https://doi.org/10.5281/zenodo.3961543 (2020).
Digital Geological Model of the Shallow Subsurface of the Netherlands (DGM) version v2.2 (TNO-GDN, 2022); https://www.dinoloket.nl/en/the-digital-geological-model-dgm (2022).
Van der Meer, D. G., Scotese, C. R., Mills, B. J. W., Sluijs, A. & Van de Weg, R. M. B. Long-term Phanerozoic global mean sea level: insights from strontium isotope variations and estimates of continental glaciation. Gondwana Res. 111, 103–121 (2022).
Vernes, R. W. et al. Geologisch en hydrogeologisch 3D model van het Cenozoïcum van de Belgisch-Nederlandse grensstreek van Midden-Brabant / De Kempen (H3O – De Kempen) TNO-Report 2017 R11261 / VITO-Report 2017/RMA/R/1348 (TNO, 2018).
Dellwig, O., Böttcher, M. E., Lipinski, M. & Brumsack, H.-J. Trace metals in Holocene coastal peats and their relation to pyrite formation (NW Germany). Chem. Geol. 182, 423–442 (2002).
Goldberg, T. et al. Suitability of calibrated X-ray fluorescence core scanning for environmental geochemical characterisation of heterogeneous sediment cores. Appl. Geochem. 125, 104824 (2021).
Guyard, H. et al. High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the Western French Alps (Lake Bramant, Grandes Rousses Massif). Quat. Sci. Rev. 26, 2644–2660 (2007).
Hartley, B., Barber, H. G., Carter, J. R. & Sims, P. An Atlas of British Diatoms (Biopres, 1996).
Hemphill-Haley, E. Taxonomy of Recent and Fossil (Holocene) Diatoms (Bacillariophyta) from Northern Willapa Bay, Washington Report No. 2331-1258 (US Geological Survey, 1993).
Patrick, R. & Reimer, C. W. The Diatoms of the United States. Volume 2, Part 1 Vol. 13 (Academy of Natural Sciences of Philadelphia, 1975).
Patrick, R. & Reimer, C. W. The Diatoms of the United States. Volume 1 Vol. 13 (Academy of Natural Sciences of Philadelphia, 1966).
Palmer, A. J. M. & Abbott, W. H. in Sea-Level Research: A Manual for the Collection and Evaluation of Data (ed. van de Plassche, O.) 457–487 (Springer, 1986).
Tjallingii, R., Stattegger, K., Wetzel, A. & Van Phach, P. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise. Quat. Sci. Rev. 29, 1432–1444 (2010).
Van der Werff, A. & Huls, H. Diatomeeenflora van Nederland. 8 Parts (Westzijde 13a, 1958).
Weltje, G. J. et al. in Micro-XRF Studies of Sediment Cores: Applications of a Non-destructive Tool for the Environmental Sciences (eds Croudace, I. W. & Guy Rothwell, R.) 507–534 (Springer, 2015).
Ziegler, M., Jilbert, T., de Lange, G. J., Lourens, L. J. & Reichart, G.-J. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001932 (2008).
Zuther, M., Brockamp, O. & Clauer, N. Composition and origin of clay minerals in Holocene sediments from the south-eastern North Sea. Sedimentology 47, 119–134 (2000).
Rieu, R., Van Heteren, S., Van der Spek, A. J. F. & De Boer, P. L. Development and preservation of a mid-Holocene tidal-channel network offshore the western Netherlands. J. Sediment. Res. 75, 409–419 (2005).
Hijma, M. P., Van der Spek, A. J. F. & Van Heteren, S. Development of a mid-Holocene estuarine basin, Rhine–Meuse mouth area, offshore the Netherlands. Mar. Geol. 271, 198–211 (2010).
Streif, H. Geologische Karte von Niedersachsen 1:25 000, Blatt 2314 Wilhemshaven (NLfB Hannover, 1981).
Berendsen, H. J. A. et al. New groundwater-level rise data from the Rhine–Meuse delta—implications for the reconstruction of Holocene relative mean sea-level rise and differential land-level movements. Neth. J. Geosci. 86, 333–354 (2007).