Saturday, March 22, 2025
No menu items!
HomeNatureGlobal sea-level rise in the early Holocene revealed from North Sea peats

Global sea-level rise in the early Holocene revealed from North Sea peats

  • Smith, D. E., Harrison, S., Firth, C. R. & Jordan, J. T. The early Holocene sea level rise. Quat. Sci. Rev. 30, 1846–1860 (2011).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Khan, N. S. et al. Inception of a global atlas of sea levels since the Last Glacial Maximum. Quat. Sci. Rev. 220, 359–371 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Cohen, K. M. & Hijma, M. P. in Doggerland. Lost World under the North Sea (eds Amkreutz, L. W. S. W. & Van der Vaart-Verschoof, S.) 31–35 (Sidestone Press, 2022).

  • Gaffney, V., Fitch, S. & Smith, D. Europe’s Lost World: the Rediscovery of Doggerland (Council for British Archeology, 2009).

  • Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (IPCC, Cambridge Univ. Press, 2023).

  • Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 383–464 (IPCC, Cambridge Univ. Press, 2013).

  • Kaufman, D. S. & Broadman, E. Revisiting the Holocene global temperature conundrum. Nature 614, 425–435 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalton, A. S. et al. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quat. Sci. Rev. 234, 106223 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE‐6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ullman, D. J., Carlson, A. E., Anslow, F. S., LeGrande, A. N. & Licciardi, J. M. Laurentide ice-sheet instability during the last deglaciation. Nat. Geosci. 8, 534–537 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pittard, M. L., Whitehouse, P. L., Bentley, M. J. & Small, D. An ensemble of Antarctic deglacial simulations constrained by geological observations. Quat. Sci. Rev. 298, 107800 (2022).

    Article 

    Google Scholar
     

  • Carlson, A. E. & Clark, P. U. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys. https://doi.org/10.1029/2011RG000371 (2012).

  • Bradley, S. L., Ely, J. C., Clark, C. D., Edwards, R. J. & Shennan, I. Reconstruction of the palaeo-sea level of Britain and Ireland arising from empirical constraints of ice extent: implications for regional sea level forecasts and North American ice sheet volume. J. Quat. Sci. 38, 791–805 (2023).

    Article 

    Google Scholar
     

  • Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shennan, I., Long, A. J. & Horton, B. P. (eds) Handbook of Sea-Level Research (Wiley/AGU, 2015).

  • Hanebuth, T., Stattegger, K. & Grootes, P. M. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288, 1033–1035 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan, N. S. et al. Drivers of Holocene sea-level change in the Caribbean. Quat. Sci. Rev. 155, 13–36 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Bard, E., Hamelin, B. & Delanghe-Sabatier, D. Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. Science 327, 1235–1237 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hibbert, F. D. et al. Coral indicators of past sea-level change: a global repository of U-series dated benchmarks. Quat. Sci. Rev. 145, 1–56 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Shennan, I., Bradley, S. L. & Edwards, R. Relative sea-level changes and crustal movements in Britain and Ireland since the Last Glacial Maximum. Quat. Sci. Rev. 188, 143–159 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chua, S. et al. A new Holocene sea-level record for Singapore. Holocene 31, 1376–1390 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kiden, P., Denys, L. & Johnston, P. Late Quaternary sea-level change and isostatic and tectonic land movement along the Belgian–Dutch North Sea coast: geological data and model results. J. Quat. Sci. 17, 535–546 (2002).

    Article 

    Google Scholar
     

  • Steffen, H. & Wu, P. Glacial isostatic adjustment in Fennoscandia—a review of data and modeling. J. Geodyn. 52, 169–204 (2011).

    Article 
    MATH 

    Google Scholar
     

  • Vink, A., Steffen, H., Reinhardt, L. & Kaufmann, G. Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea). Quat. Sci. Rev. 26, 3249–3275 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Eaton, S., Barlow, N. L. M., Hodgson, D. M., Mellett, C. L. & Emery, A. R. Landscape evolution during Holocene transgression of a mid-latitude low-relief coastal plain: the southern North Sea. Earth Surf. Process. Landf. 49, 3139–3157 (2024).

    Article 

    Google Scholar
     

  • Shennan, I. et al. Modelling western North Sea palaeogeographies and tidal changes during the Holocene. Geol. Soc. Lond. Spec. Publ. 166, 299–319 (2000).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Love, R. et al. The contribution of glacial isostatic adjustment to projections of sea-level change along the Atlantic and Gulf coasts of North America. Earths Future 4, 440–464 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Spada, G. & Melini, D. New estimates of ongoing sea level change and land movements caused by glacial isostatic adjustment in the Mediterranean region. Geophys. J. Int. 229, 984–998 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Vermeersen, B. L. A. et al. Sea-level change in the Dutch Wadden Sea. Neth. J. Geosci. 97, 79–127 (2018).


    Google Scholar
     

  • Van de Wal, R. S. W. et al. A high-end estimate of sea level rise for practitioners. Earths Future 10, e2022EF002751 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hijma, M. P. & Cohen, K. M. Holocene sea-level database for the Rhine-Meuse Delta, The Netherlands: implications for the pre-8.2 ka sea-level jump. Quat. Sci. Rev. 214, 68–86 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ward, S. L., Neill, S. P., Scourse, J. D., Bradley, S. L. & Uehara, K. Sensitivity of palaeotidal models of the northwest European shelf seas to glacial isostatic adjustment since the Last Glacial Maximum. Quat. Sci. Rev. 151, 198–211 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Creel, R. C. et al. Global mean sea level likely higher than present during the holocene. Nat. Commun. https://doi.org/10.1038/s41467-024-54535-0 (2024).

  • Solomina, O. N. et al. Holocene glacier fluctuations. Quat. Sci. Rev. 111, 9–34 (2015).

    Article 

    Google Scholar
     

  • Gangadharan, N. et al. Process-based estimate of global-mean sea-level changes in the Common Era. Earth Syst. Dyn. 13, 1417–1435 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Cahill, N., Kemp, A. C., Horton, B. P. & Parnell, A. C. A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change. Clim. Past 12, 525–542 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Cahill, N., Kemp, A. C., Horton, B. P. & Parnell, A. C. Modeling sea-level change using errors-in-variables integrated Gaussian processes. Ann. Appl. Stat. 9, 547–571 (2015).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Brouard, E., Roy, M., Godbout, P.-M. & Veillette, J. J. A framework for the timing of the final meltwater outbursts from glacial Lake Agassiz–Ojibway. Quat. Sci. Rev. 274, 107269 (2021).

    Article 

    Google Scholar
     

  • Rush, G. et al. The magnitude and source of meltwater forcing of the 8.2 ka climate event constrained by relative sea-level data from eastern Scotland. Quat. Sci. Adv. 12, 100119 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Leverington, D. W., Mann, J. D. & Teller, J. T. Changes in the bathymetry and volume of glacial Lake Agassiz between 9,200 and 7,700 14C yr bp. Quat. Res. 57, 244–252 (2002).

    Article 

    Google Scholar
     

  • You, D. et al. Last deglacial abrupt climate changes caused by meltwater pulses in the Labrador Sea. Commun. Earth Environ. 4, 81 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Lin, Y. et al. A reconciled solution of meltwater pulse 1A sources using sea-level fingerprinting. Nat. Commun. 12, 2015 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mackintosh, A. et al. Retreat of the East Antarctic ice sheet during the last glacial termination. Nat. Geosci. 4, 195–202 (2011).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Golledge, N. R. et al. Retreat of the Antarctic Ice Sheet during the last interglaciation and implications for future change. Geophys. Res. Lett. 48, e2021GL094513 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1–45 (2016).

    Article 

    Google Scholar
     

  • Patton, H. et al. Deglaciation of the Eurasian ice sheet complex. Quat. Sci. Rev. 169, 148–172 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Cuzzone, J. K. et al. Final deglaciation of the Scandinavian Ice Sheet and implications for the Holocene global sea-level budget. Earth Planet. Sci. Lett. 448, 34–41 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hijma, M. P. et al. Global sea-level rise in the early Holocene revealed from North Sea peats: supplementary information. Zenodo https://doi.org/10.5281/zenodo.10801302 (2025).

  • Walker, J. S., Kopp, R. E., Little, C. M. & Horton, B. P. Timing of emergence of modern rates of sea-level rise by 1863. Nat. Commun. 13, 966 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, J. S. et al. Common Era sea-level budgets along the U.S. Atlantic coast. Nat. Commun. 12, 1841 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • DINOloket (Internet Portal for Geo-Information) (TNO, 2024); https://www.dinoloket.nl/en.

  • Niedersächsischen Bodeninformationssystems (NIBIS, 2024); https://nibis.lbeg.de/cardomap3/?TH=PROFILBKBOHRSEBOHRGEBOHRHYBOHRIGBOHR1447599.

  • Reinhardt, L. & Vink, A. RV Celtic Explorer North Sea Cruise 2009—Geology and Geophysics Geopotenzial Deutsche Nordsee Project BGR, LBEG and BSH Report (BGR, 2009).

  • Reinhardt, L. & Lutz, R. RV Celtic Explorer North Sea Cruise 2011—Geology and Geophysics Geopotenzial Deutsche Nordsee Project BGR, LBEG and BSH Report (BGR, 2011).

  • De Haas, H. North Sea Monitoring Texel—Texel, 16 June – 29 June 2017 NIOZ cruise report RV Pelagia cruise 64PE423 (2017).

  • Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article 
    MATH 

    Google Scholar
     

  • Van Asselen, S. Peat Compaction in Deltas: Implications for Holocene Delta Evolution. PhD dissertation, Utrecht Univ. (2010).

  • Uehara, K., Scourse, J. D., Horsburgh, K. J., Lambeck, K. & Purcell, A. P. Tidal evolution of the northwest European shelf areas from the Last Glacial Maximum to the present. J. Geophys. Res. 111, C09025–C09025 (2006).

    ADS 

    Google Scholar
     

  • Van der Molen, J. & De Swart, H. E. Holocene tidal conditions and tide-induced sand transport in the southern North Sea. J. Geophys. Res. C 106, 9339–9362 (2001).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Van der Molen, J. & Van Dijck, B. The evolution of the Dutch and Belgian coasts and the role of sand supply from the North Sea. Glob. Planet. Change 27, 223–244 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Van de Plassche, O. Sea-level Change and Water-level Movements in The Netherlands during the Holocene PhD dissertation, Vrije Univ. (1982).

  • Van de Plassche, O. & Roep, T. B. in Late Quaternary Sea-level Correlation and Applications (eds Scott, D. B. et al.) 41–56 (Kluwer, 1989).

  • Cohen, K. M., Cartelle, V., Barnett, R., Busschers, F. S. & Barlow, N. L. M. Last Interglacial sea-level data points from Northwest Europe. Earth Syst. Sci. Data 14, 2895–2937 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Van de Plassche, O. in Sea-level Research: A Manual for the Collection and Evaluation of Data (ed. Van de Plassche O.) 1–26 (Geobooks, 1986).

  • Kendall, R. A., Mitrovica, J. X. & Milne, G. A. On post-glacial sea level—II. Numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int. 161, 679–706 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Milne, G. A. & Mitrovica, J. X. Postglacial sea-level change on a rotating Earth. Geophys. J. Int. 133, 1–19 (1998).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Mitrovica, J. X., Milne, G. A. & Davis, J. L. Glacial isostatic adjustment on a rotating earth. Geophys. J. Int. 147, 562–578 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Clark, C. D. et al. Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE-CHRONO reconstruction. Boreas 51, 699–758 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Gowan, E. J. et al. ICESHEET 1.0: a program to produce paleo-ice sheet reconstructions with minimal assumptions. Geosci. Model Dev. 9, 1673–1682 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wu, P. Using commercial finite element packages for the study of Earth deformations, sea levels and the state of stress. Geophys. J. Int. 158, 401–408 (2004).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Blank, B., Barletta, V., Hu, H., Pappa, F. & van der Wal, W. Effect of lateral and stress-dependent viscosity variations on GIA induced uplift rates in the Amundsen Sea Embayment. Geochem. Geophys. Geosyst. 22, e2021GC009807 (2021).

    Article 
    ADS 

    Google Scholar
     

  • NOAA National Geophysical Data Center. 2006: 2-minute gridded global relief data (etopo2) v2. NOAA National Centers for Environmental Information https://doi.org/10.7289/V5J1012Q (2023).

  • Ivins, E. R., Van der Wal, W., Wiens, D. A., Lloyd, A. J. & Caron, L. Antarctic upper mantle rheology. Geol. Soc. Lond. Mem. 56, 267–294 (2023).

    Article 

    Google Scholar
     

  • Karato, S.-I. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth (Cambridge Univ. Press, 2008).

  • Wu, P., Wang, H. & Steffen, H. The role of thermal effect on mantle seismic anomalies under Laurentia and Fennoscandia from observations of glacial isostatic adjustment. Geophys. J. Int. 192, 7–17 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Hirth, G. & Kohlstedt, D. in Inside the Subduction Factory (ed. Eiler, J.) 83–105 (American Geophysical Union, 2004).

  • Lau, H. C. P. Transient rheology in sea level change: implications for meltwater pulse 1A. Earth Planet. Sci. Lett. 609, 118106 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Simon, K. M., Riva, R. E. M. & Broerse, T. Identifying geographical patterns of transient deformation in the geological sea level record. J. Geophys. Res. Solid Earth 127, e2021JB023693 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Fullea, J., Lebedev, S., Martinec, Z. & Celli, N. L. WINTERC-G: mapping the upper mantle thermochemical heterogeneity from coupled geophysical–petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data. Geophys. J. Int. 226, 146–191 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wal, W. V. D. et al. Glacial isostatic adjustment model with composite 3-D Earth rheology for Fennoscandia. Geophys. J. Int. 194, 61–77 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Celli, N. L., Lebedev, S., Schaeffer, A. J. & Gaina, C. The tilted Iceland Plume and its effect on the North Atlantic evolution and magmatism. Earth Planet. Sci. Lett. 569, 117048 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Debayle, E., Dubuffet, F. & Durand, S. An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy. Geophys. Res. Lett. 43, 674–682 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Simms, A. R., Lisiecki, L., Gebbie, G., Whitehouse, P. L. & Clark, J. F. Balancing the last glacial maximum (LGM) sea-level budget. Quat. Sci. Rev. 205, 143–153 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Paterson, W. S. B. The Physics of Glaciers (Pergamon, 1994).

  • Ullman, D. J. et al. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change. Quat. Sci. Rev. 152, 49–59 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Dalton, A. S. et al. Deglaciation of the North American ice sheet complex in calendar years based on a comprehensive database of chronological data: NADI-1. Quat. Sci. Rev. 321, 108345 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Gowan, E. J. et al. A new global ice sheet reconstruction for the past 80 000 years. Nat. Commun. 12, 1199 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Milne, G. A., Gehrels, W. R., Hughes, C. W. & Tamisiea, M. E. Identifying the causes of sea-level change. Nat. Geosci. 2, 471–478 (2009).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Hijma, M. P. & Cohen, K. M. Timing and magnitude of the sea-level jump preluding the 8200 yr event. Geology 38, 275–278 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Törnqvist, T. E. & Hijma, M. P. Links between early Holocene ice-sheet decay, sea-level rise and abrupt climate change. Nat. Geosci. 5, 601–606 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kendall, R. A., Mitrovica, J. X., Milne, G. A., Törnqvist, T. E. & Li, Y. The sea-level fingerprint of the 8.2 ka climate event. Geology 36, 423–426 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Argus, D. F., Peltier, W. R., Drummond, R. & Moore, A. W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int. 198, 537–563 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hijma, M. P. et al. in Handbook of Sea-Level Research (eds Shennan, I. et al.) 536–553 (Wiley-Blackwell, 2015).

  • Alappat, L., Vink, A., Tsukamoto, S. & Frechen, M. Establishing the Late Pleistocene–Holocene sedimentation boundary in the southern North Sea using OSL dating of shallow continental shelf sediments. Proc. Geol. Assoc. 121, 43–54 (2010).

    Article 

    Google Scholar
     

  • Baeteman, C., Waller, M. & Kiden, P. Reconstructing middle to late Holocene sea-level change: a methodological review with particular reference to ‘A new Holocene sea-level curve for the southern North Sea’ presented by K.-E. Behre. Boreas 40, 557–572 (2011).

    Article 

    Google Scholar
     

  • Barckhausen, J. Geologische Karte von Niedersachsen 1:25000, Blatt 2609 Emden (NLfB Hannover, 1984).

  • Behre, K.-E. Eine neue Meeresspiegelkurve für die südliche Nordsee. Probleme der Küstenforschung im südlichen Nordseegebiet 28, 9–63 (2003).


    Google Scholar
     

  • Behre, K.-E. Die ursprüngliche Vegetation in den deutschen Marschgebieten und deren Veränderung durch prähistorische Besiedlung und Meeresspiegelbewegungen Vol. 13, 85–96 (Gesellschaft für Ökologie, 1985).

  • Behre, K.-E., Menke, B. & Streif, H. The quaternary geological development of the German part of the North Sea. Acta Univ. Ups. Symp. Univ. Ups. Annum Quingentesimum Celebrantis 2, 85–113 (1979).

  • Bos, I. J., Busschers, F. S. & Hoek, W. Z. Organic-facies determination: a key for understanding facies distribution in the basal peat layer of the Holocene Rhine–Meuse delta, The Netherlands. Sedimentology 59, 676–703 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Brain, M. J. et al. Modelling the effects of sediment compaction on salt marsh reconstructions of recent sea-level rise. Earth Planet. Sci. Lett. 345–348, 180–193 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Bungenstock, F., Freund, H. & Bartholomä, A. Holocene relative sea-level data for the East Frisian barrier coast, NW Germany, southern North Sea—CORRIGENDUM. Neth. J. Geosci. 101, e2 (2022).

    MATH 

    Google Scholar
     

  • Bungenstock, F., Freund, H. & Bartholomä, A. Holocene relative sea-level data for the East Frisian barrier coast, NW Germany, southern North Sea. Neth. J. Geosci. 100, e16 (2021).


    Google Scholar
     

  • Clerkx, A. P. P. M. et al. Broekbossen van Nederland IBN-Report 096 (Instituut voor Bos- en Natuuronderzoek, 1994).

  • Cohen, K. M. in River Deltas: Concepts, Models, and Examples SEPM Special Publication Vol. 83 (eds Giosan, L. & Bhattacharaya, J. P.) 341–364 (Society for Sedimentary Geology, 2005).

  • De Haas, T. et al. Holocene evolution of tidal systems in The Netherlands: effects of rivers, coastal boundary conditions, eco-engineering species, inherited relief and human interference. Earth Sci. Rev. 177, 139–163 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Nougues, L. Bodemdalingsmonitor 2022 Kustfundament en getijdenbekkens—Bodemdaling en GNSS-stations Deltares Report 11208035-003-ZKS-0004 (Deltares, 2022).

  • Hijma, M. P. & Van Onselen, E. Bodemdalingsmonitor 2019—Kustfundament en de getijdenbekkens Deltares Report 11203683-002-ZKS-0017 (Deltares, 2019).

  • Hijma, M. P., Cohen, K. M., Hoffmann, G., Van der Spek, A. J. F. & Stouthamer, E. From river valley to estuary: the evolution of the Rhine mouth in the early to middle Holocene (western Netherlands, Rhine-Meuse delta). Neth. J. Geosci. 88, 13–53 (2009).


    Google Scholar
     

  • Jelgersma, S. Holocene sea-level changes in The Netherlands. Mededelingen Geologische Stichting 7, 1–101 (1961).


    Google Scholar
     

  • Konradi, P. B. Biostratigraphy and environment of the Holocene marine transgression in the Heligoland Channel, North Sea. Bull. Geol. Soc. Den. 47, 71–79 (2000).


    Google Scholar
     

  • Kooi, H., Johnston, P., Lambeck, K., Smither, C. & Ronald, M. Geological causes of recent (~100 yr) vertical land movement in The Netherlands. Tectonophysics 299, 297–316 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Koster, K., De Lange, G., Harting, R., de Heer, E. & Middelkoop, H. Characterizing void ratio and compressibility of Holocene peat with CPT for assessing coastal–deltaic subsidence. Q. J. Eng. Geol. Hydrogeol. 51, 210 (2018).

    Article 

    Google Scholar
     

  • Koster, K., Stafleu, J. & Cohen, K. M. Generic 3D interpolation of Holocene base-level rise and provision of accommodation space, developed for the Netherlands coastal plain and infilled palaeovalleys. Basin Res. 29, 775–797 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Krüger, S., Dörfler, W., Bennike, O. & Wolters, S. Life in Doggerland—palynological investigations of the environment of prehistoric hunter-gatherer societies in the North Sea Basin. E&G Quat. Sci. J. 66, 3–13 (2017).

    Article 

    Google Scholar
     

  • Linke, G. Der Ablauf der holozänen Transgression der Nordsee aufgrund von Ergebnissen aus dem Gebiet Neuwerk/Scharhörn. Probleme der Küstenforschung im südlichen Nordseegebiet 14, 123–157 (1982).


    Google Scholar
     

  • Ludwig, G., Müller, H. & Streif, H. New dates on Holocene sealevel changes in the German Bight. Spec. Publ. Int. Assoc. Sediment. 5, 211–219 (1981).


    Google Scholar
     

  • Ludwig, G., Müller, H. & Streif, H. Neuere Datum zum holozänen Meeresspiegelanstieg im Bereich der Deutschen Bucht. Geol. Jahrb. D 32, 3–22 (1979).


    Google Scholar
     

  • Meijles, E. W. et al. Holocene relative mean sea-level changes in the Wadden Sea area, northern Netherlands. J. Quat. Sci. https://doi.org/10.1002/jqs.3068 (2018).

  • Makaske, B., Van Smeerdijk, D. G., Peeters, H., Mulder, J. R. & Spek, T. Relative water-level rise in the Flevo lagoon (The Netherlands), 5300–2000 cal. yr BC: an evaluation of new and existing basal peat time-depth data. Neth. J. Geosci. 82, 115–131 (2016).


    Google Scholar
     

  • Menke, B. Befunde und Überlegungen zum nacheiszeitlichen Meeresspiegelanstieg (Dithmarschen und Eiderstedt, Schleswig-Holstein). Probleme der Küstenforschung im südlichen Nordseegebiet 11, 145–161 (1976).

    MATH 

    Google Scholar
     

  • Menke, B. in Deutsche Beiträge zur Quartärforschung in der südlichen Nordsee Geologisches Jahrbuch Vol. A146 (ed. Streif, H.) 177–182 (Bundesanstalt für Geowissenschaften und Rohstoffe und den Staatlichen Geologischen Diensten in der Bundesrepublik Deutschland, 1996).

  • Oele, E. The Quaternary geology of the Dutch part of the North Sea, north of the Frisian Isles. Geol. Mijnbouw 48, 467–480 (1969).

    CAS 

    Google Scholar
     

  • Preuss, H. Die holozäne Entwicklung der Nordseeküste im Gebiet der östlichen Wesermarsch. Geol. Jahrb. 53, 1–89 (1979).

    MATH 

    Google Scholar
     

  • Reynaud, J.-Y. & Dalrymple, R. W. in Principles of Tidal Sedimentology (eds Davis, R. A. Jr & Dalrymple, R. W.) 335–369 (Springer, 2012).

  • Schaumann, R. M. et al. The Middle Pleistocene to early Holocene subsurface geology of the Norderney tidal basin: new insights from core data and high-resolution sub-bottom profiling (Central Wadden Sea, southern North Sea). Neth. J. Geosci. 100, e15 (2021).

    MATH 

    Google Scholar
     

  • Schlütz, F., Enters, D. & Bittmann, F. From dust till drowned: the Holocene landscape development at Norderney, East Frisian Islands. Neth. J. Geosci. 100, e7 (2021).


    Google Scholar
     

  • Shennan, I. et al. Holocene isostasy and relative sea-level changes on the east coast of England. Geol. Soc. Lond. Spec. Publ. 166, 275–298 (2000).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Streif, H. Geologische Karte von Niedersachsen 1:25 000, Blatt 2314 Hooksiel (NLfB Hannover, 1985).

  • Streif, H., Uffenorde, H. & Vinken, R. Untersuchungen zum pleistozänen und holozänen Trangressionsgeschehen im Bereich der südlichen Nordsee (Niedersächsisches Landesamt für Bodenforschung, 1983).

  • Törnqvist, T. E., van Ree, M. H. M., van ‘t Veer, R. & van Geel, B. Improving methodology for high-resolution reconstruction of sea-level rise and neotectonics by paleoecological analysis and AMS 14C dating of basal peats. Quat. Res. 49, 72–85 (1998).

    Article 

    Google Scholar
     

  • Van Asselen, S., Cohen, K. M. & Stouthamer, E. The impact of avulsion on groundwater level and peat formation in delta floodbasins during the middle-Holocene transgression in the Rhine–Meuse delta, The Netherlands. Holocene 27, 1694–1706 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Asselen, S., Karssenberg, D. & Stouthamer, E. Contribution of peat compaction to relative sea-level rise within Holocene deltas. Geophys. Res. Lett. 38, L24401–L24401 (2011).

    ADS 

    Google Scholar
     

  • Van de Plassche, O. Evolution of the intra-coastal tidal range in the Rhine–Meuse delta and Flevo Lagoon, 5700–3000 yrs cal B.C. Mar. Geol. 124, 113–128 (1995).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Van de Plassche, O., Bohncke, S. J. P., Makaske, B. & Van der Plicht, J. Water-level changes in the Flevo area, central Netherlands (5300–1500 BC): implications for relative mean sea-level rise in the Western Netherlands. Quat. Int. 133-134, 77–93 (2005).

    Article 

    Google Scholar
     

  • Van de Plassche, O., Makaske, B., Hoek, W. Z., Konert, M. & Van der Plicht, J. Mid-Holocene water-level changes in the lower Rhine–Meuse delta (western Netherlands): implications for the reconstruction of relative mean sea-level rise, palaeoriver-gradients and coastal evolution. Neth. J. Geosci. 89, 3–20 (2010).


    Google Scholar
     

  • Van der Spek, A. J. F. Large-scale Evolution of Holocene Tidal Basins in the Netherlands. PhD dissertation, Utrecht Univ. (1994).

  • Vis, G.-J. et al. in Handbook of Sea-Level Research (eds Shennan, I. et al.) 514–535 (Wiley-Blackwell, 2015).

  • Vos, P. C., Bunnik, F. P. M., Cohen, K. M. & Cremer, H. A staged geogenetic approach to underwater archaeological prospection in the Port of Rotterdam (Yangtzehaven, Maasvlakte, The Netherlands): a geological and palaeoenvironmental case study for local mapping of Mesolithic lowland landscapes. Quat. Int. 367, 4–31 (2015).

    Article 

    Google Scholar
     

  • Wolters, S., Zeiler, M. & Bungenstock, F. Early Holocene environmental history of sunken landscapes: pollen, plant macrofossil and geochemical analyses from the Borkum Riffgrund, southern North Sea. Int. J. Earth Sci. 99, 1707–1719 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bloemsma, M. Development of a Modelling Framework for Core Data Integration using XRF Scanning. PhD thesis, Delft Univ. Technology (2015).

  • Arfai, J. et al. Rapid Quaternary subsidence in the northwestern German North Sea. Sci. Rep. 8, 11524 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cameron, T. D. J., Laban, C. & Schüttenhelm, R. T. E. Quaternary Geology. Sheet 52°N–2°E, Flemish Bight 1:250.000 Series (British Geological Survey, 1984).

  • Laban, C., Schüttenhelm, R. T. E., Balson, P. S., Baeteman, C. & Paepe, R. Quaternary Geology. Sheet 51°N–02°E, Ostend 1:250.000 Series (British Geological Survey, 1992).

  • Deckers, J. et al. Geologisch en hydrogeologisch 3D model van het Cenozoïcum van de Roerdalslenk in Zuidoost-Nederland en Vlaanderen (H3O-Roerdalslenk) TNO-Report 2014 R10799 / VITO-Report 2014/ETE/R/1 (TNO, 2014).

  • Teilmodell Quartär 3D. Bundesministerium für Wirtschaft und Technologie (BMWi), Niedersächsischen Ministerium für Wirtschaft, Arbeit und Verkehr, Bundesministerium für Verkehr, Bau und Stadtentwicklung (BMVBS) (GPDN, 2022); https://www.gpdn.de/.

  • Jakob, K. A. et al. A new sea-level record for the Neogene/Quaternary boundary reveals transition to a more stable East Antarctic Ice Sheet. Proc. Natl Acad. Sci. USA 117, 30980–30987 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. & Oppenheimer, M. Probabilistic assessment of sea level during the last interglacial stage. Nature 462, 863–867 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuhlmann, G. et al. Chronostratigraphy of Late Neogene sediments in the southern North Sea Basin and paleoenvironmental interpretations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 426–455 (2006).

    Article 
    MATH 

    Google Scholar
     

  • Kuhlmann, G. et al. Integrated chronostratigraphy of the Pliocene–Pleistocene interval and its relation to the regional stratigraphical stages in the southern North Sea region. Neth. J. Geosci. 85, 19–35 (2006).

    MATH 

    Google Scholar
     

  • Lamb, R. M., Harding, R., Huuse, M., Stewart, M. & Brocklehurst, S. H. The early Quaternary North Sea Basin. J. Geol. Soc. 175, 275–290 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lambeck, K. et al. Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling. Boreas 35, 539–575 (2006).

    Article 
    MATH 

    Google Scholar
     

  • Generalised Quarternary Geological Map of Lower Saxony, 1:500 000—Depth of the Quaternary Base (Landesambt für Bergbau, Energie und Geologie, 2022).

  • Nielsen, T., Mathiesen, A. & Bryde-Auken, M. Base Quaternary in the Danish parts of the North Sea and Skagerrak. GEUS Bull. 15, 37–40 (2008).

    Article 

    Google Scholar
     

  • Patruno, S. et al. Upslope‐climbing shelf‐edge clinoforms and the stepwise evolution of the northern European glaciation (lower Pleistocene Eridanos Delta system, UK North Sea): when sediment supply overwhelms accommodation. Basin Res. 32, 224–239 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Rovere, A. et al. Documentation of the World Atlas of Last Interglacial Shorelines (WALIS). Zenodo https://doi.org/10.5281/zenodo.3961543 (2020).

  • Digital Geological Model of the Shallow Subsurface of the Netherlands (DGM) version v2.2 (TNO-GDN, 2022); https://www.dinoloket.nl/en/the-digital-geological-model-dgm (2022).

  • Van der Meer, D. G., Scotese, C. R., Mills, B. J. W., Sluijs, A. & Van de Weg, R. M. B. Long-term Phanerozoic global mean sea level: insights from strontium isotope variations and estimates of continental glaciation. Gondwana Res. 111, 103–121 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Vernes, R. W. et al. Geologisch en hydrogeologisch 3D model van het Cenozoïcum van de Belgisch-Nederlandse grensstreek van Midden-Brabant / De Kempen (H3O – De Kempen) TNO-Report 2017 R11261 / VITO-Report 2017/RMA/R/1348 (TNO, 2018).

  • Dellwig, O., Böttcher, M. E., Lipinski, M. & Brumsack, H.-J. Trace metals in Holocene coastal peats and their relation to pyrite formation (NW Germany). Chem. Geol. 182, 423–442 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Goldberg, T. et al. Suitability of calibrated X-ray fluorescence core scanning for environmental geochemical characterisation of heterogeneous sediment cores. Appl. Geochem. 125, 104824 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Guyard, H. et al. High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the Western French Alps (Lake Bramant, Grandes Rousses Massif). Quat. Sci. Rev. 26, 2644–2660 (2007).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Hartley, B., Barber, H. G., Carter, J. R. & Sims, P. An Atlas of British Diatoms (Biopres, 1996).

  • Hemphill-Haley, E. Taxonomy of Recent and Fossil (Holocene) Diatoms (Bacillariophyta) from Northern Willapa Bay, Washington Report No. 2331-1258 (US Geological Survey, 1993).

  • Patrick, R. & Reimer, C. W. The Diatoms of the United States. Volume 2, Part 1 Vol. 13 (Academy of Natural Sciences of Philadelphia, 1975).

  • Patrick, R. & Reimer, C. W. The Diatoms of the United States. Volume 1 Vol. 13 (Academy of Natural Sciences of Philadelphia, 1966).

  • Palmer, A. J. M. & Abbott, W. H. in Sea-Level Research: A Manual for the Collection and Evaluation of Data (ed. van de Plassche, O.) 457–487 (Springer, 1986).

  • Tjallingii, R., Stattegger, K., Wetzel, A. & Van Phach, P. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise. Quat. Sci. Rev. 29, 1432–1444 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Van der Werff, A. & Huls, H. Diatomeeenflora van Nederland. 8 Parts (Westzijde 13a, 1958).

  • Weltje, G. J. et al. in Micro-XRF Studies of Sediment Cores: Applications of a Non-destructive Tool for the Environmental Sciences (eds Croudace, I. W. & Guy Rothwell, R.) 507–534 (Springer, 2015).

  • Ziegler, M., Jilbert, T., de Lange, G. J., Lourens, L. J. & Reichart, G.-J. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001932 (2008).

  • Zuther, M., Brockamp, O. & Clauer, N. Composition and origin of clay minerals in Holocene sediments from the south-eastern North Sea. Sedimentology 47, 119–134 (2000).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Rieu, R., Van Heteren, S., Van der Spek, A. J. F. & De Boer, P. L. Development and preservation of a mid-Holocene tidal-channel network offshore the western Netherlands. J. Sediment. Res. 75, 409–419 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Hijma, M. P., Van der Spek, A. J. F. & Van Heteren, S. Development of a mid-Holocene estuarine basin, Rhine–Meuse mouth area, offshore the Netherlands. Mar. Geol. 271, 198–211 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Streif, H. Geologische Karte von Niedersachsen 1:25 000, Blatt 2314 Wilhemshaven (NLfB Hannover, 1981).

  • Berendsen, H. J. A. et al. New groundwater-level rise data from the Rhine–Meuse delta—implications for the reconstruction of Holocene relative mean sea-level rise and differential land-level movements. Neth. J. Geosci. 86, 333–354 (2007).

    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments