Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).
Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).
Qin, B. et al. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ. Manag. 45, 105–112 (2010).
Zhao, G. & Gao, H. Automatic correction of contaminated images for assessment of reservoir surface area dynamics. Geophys. Res. Lett. 45, 6092–6099 (2018).
Nyberg, B., Sayre, R. & Luijendijk, E. Increasing seasonal variation in the extent of rivers and lakes from 1984 to 2022. Hydrol. Earth Syst. Sci. 28, 1653–1663 (2024).
Yao, F. et al. Satellites reveal widespread decline in global lake water storage. Science 380, 743–749 (2023).
Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
Zhang, G. et al. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sens. Environ. 221, 386–404 (2019).
Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).
Seekell, D., Cael, B., Norman, S. & Byström, P. Patterns and variation of littoral habitat size among lakes. Geophys. Res. Lett. 48, e2021GL095046 (2021).
Vander Zanden, M. J. & Vadeboncoeur, Y. Putting the lake back together 20 years later: what in the benthos have we learned about habitat linkages in lakes? Inland Waters 10, 305–321 (2020).
Kuiper, J. J. et al. Food-web stability signals critical transitions in temperate shallow lakes. Nat. Commun. 6, 7727 (2015).
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50–50 (2011).
Johnson, M. S., Matthews, E., Du, J., Genovese, V. & Bastviken, D. Methane emission from global lakes: new spatiotemporal data and observation-driven modeling of methane dynamics indicates lower emissions. J. Geophys. Res. Biogeosci. 127, e2022JG006793 (2022).
Lehner, B., Messager, M. L., Korver, M. C. & Linke, S. Global hydro-environmental lake characteristics at high spatial resolution. Sci. Data 9, 351 (2022).
Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).
Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).
Pi, X. et al. Mapping global lake dynamics reveals the emerging roles of small lakes. Nat. Commun. 13, 5777 (2022).
Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, GB4009 (2004).
Khazaei, B., Read, L. K., Casali, M., Sampson, K. M. & Yates, D. N. GLOBathy, the global lakes bathymetry dataset. Sci. Data 9, 36 (2022).
Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).
Cooley, S. W., Ryan, J. C. & Smith, L. C. Human alteration of global surface water storage variability. Nature 591, 78–81 (2021).
Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).
Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).
Klein, I. et al. Global WaterPack—the development of global surface water over the past 20 years at daily temporal resolution. Sci. Data 11, 472 (2024).
Zhao, G., Li, Y., Zhou, L. & Gao, H. Evaporative water loss of 1.42 million global lakes. Nat. Commun. 13, 3686 (2022).
Hou, J., Van Dijk, A. I. J. M., Renzullo, L. J. & Larraondo, P. R. GloLakes: water storage dynamics for 27,000 lakes globally from 1984 to present derived from satellite altimetry and optical imaging. Earth Syst. Sci. Data 16, 201–218 (2024).
Yang, X. et al. Monthly estimation of the surface water extent in France at a 10-m resolution using Sentinel-2 data. Remote Sens. Environ. 244, 111803 (2020).
Chen, J. et al. Remote sensing big data for water environment monitoring: current status, challenges, and future prospects. Earths Future 10, e2021EF002289 (2022).
Zhu, X. et al. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 172, 165–177 (2016).
Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792 (2020).
Xiao, Z. et al. Unveiling the hidden dynamics of intermittent surface water: a remote sensing framework. Remote Sens. Environ. 311, 114285 (2024).
Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. STL: a seasonal-trend decomposition procedure based on loess (with discussion). J. Off. Stat. 6, 3–73 (1990).
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).
van Dijk, A. I. J. M. et al. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).
Li, X. et al. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth Syst. Sci. Data 11, 1603–1627 (2019).
Finger-Higgens, R. Diminishing Arctic lakes. Nat. Clim. Change 12, 782–783 (2022).
Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).
Center for International Earth Science Information Network (CIESIN), Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Count (NASA Socioeconomic Data and Applications Center, 2016).
Spears, B. M. et al. Ecological resilience in lakes and the conjunction fallacy. Nat. Ecol. Evol. 1, 1616–1624 (2017).
Okpara, U. T., Stringer, L. C. & Dougill, A. J. Lake drying and livelihood dynamics in Lake Chad: unravelling the mechanisms, contexts and responses. Ambio 45, 781–795 (2016).
Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).
Webb, E. E. & Liljedahl, A. K. Diminishing lake area across the northern permafrost zone. Nat. Geosci. 16, 202–209 (2023).
Qi, W., Feng, L., Yang, H. & Liu, J. Warming winter, drying spring and shifting hydrological regimes in Northeast China under climate change. J. Hydrol. 606, 127390 (2022).
Brown, E., Ferrians, O. J., Heginbottom, J. A. &. Melnikov, E. Circum-Arctic map of permafrost and ground-ice conditions, version 2. National Snow and Ice Data Center https://doi.org/10.7265/skbg-kf16 (2002).
Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).
Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).
Woolway, R. I. et al. Multivariate extremes in lakes. Nat. Commun. 15, 4559 (2024).
Samuelsson, P., Kourzeneva, E. & Mironov, D. The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ. Res. 15, 113–129 (2010).
Bertani, I., Primicerio, R. & Rossetti, G. Extreme climatic event triggers a lake regime shift that propagates across multiple trophic levels. Ecosystems 19, 16–31 (2016).
Webb, E. E. et al. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nat. Clim. Change 12, 841–846 (2022).
Ghamisi, P. et al. Multisource and multitemporal data fusion in remote sensing: a comprehensive review of the state of the art. IEEE Geosci. Remote Sens. Mag. 7, 6–39 (2019).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Zhang, Y. et al. Skilful nowcasting of extreme precipitation with NowcastNet. Nature 619, 526–532 (2023).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Li, Z. et al. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors. ISPRS J. Photogramm. Remote Sens. 150, 197–212 (2019).
Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).
Weiss, M., Jacob, F. & Duveiller, G. Remote sensing for agricultural applications: a meta-review. Remote Sens. Environ. 236, 111402 (2020).
Azad, R. et al. Medical image segmentation review: the success of U-Net. IEEE Trans. Pattern Anal. Mach. Intell. 46, 10076–10095 (2024).
Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. Preprint at https://arxiv.org/abs/1505.04597 (2015).
Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).
Suh, J. W., Zhu, Z. & Zhao, Y. Monitoring construction changes using dense satellite time series and deep learning. Remote Sens. Environ. 309, 114207 (2024).
Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
Zhang, Q., Yuan, Q., Zeng, C., Li, X. & Wei, Y. Missing data reconstruction in remote sensing image with a unified spatial–temporal–spectral deep convolutional neural network. IEEE Trans. Geosci. Remote Sens. 56, 4274–4288 (2018).
Chen, Y., Shi, K., Ge, Y. & Zhou, Y. Spatiotemporal remote sensing image fusion using multiscale two-stream convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 60, 1–12 (2022).
Goudsmit, G.-H., Burchard, H., Peeters, F. & Wüest, A. Application of k–ϵ turbulence models to enclosed basins: the role of internal seiches. J. Geophys. Res. Oceans 107, 23-1–23-13 (2002).
Gaudard, A., Råman Vinnå, L., Bärenbold, F., Schmid, M. & Bouffard, D. Toward an open access to high-frequency lake modeling and statistics data for scientists and practitioners—the case of Swiss lakes using Simstrat v2.1. Geosci. Model Dev. 12, 3955–3974 (2019).
Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 9, 409 (2022).
Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).
Pi, X. et al. Mapping global lake dynamics reveals the emerging roles of small lakes: code and data. Zenodo https://doi.org/10.5281/zenodo.7016547 (2022).
Li, L., Long, D., Wang, Y. & Woolway, R. I. Global dominance of seasonality in shaping lake surface extent dynamics. Zenodo https://doi.org/10.5281/zenodo.14568609 (2025).
Li, L., Long, D., Wang, Y., & Woolway, R. I. Global dominance of seasonality in shaping lake surface extent dynamics. Sci. Data Bank https://doi.org/10.57760/sciencedb.19653 (2025).