Thursday, January 23, 2025
No menu items!
HomeNatureGlobal 3D model of mantle attenuation using seismic normal modes

Global 3D model of mantle attenuation using seismic normal modes

  • Deschamps, F. & Trampert, J. Mantle tomography and its relation to temperature and composition. Phys. Earth Planet. Inter. 140, 277–291 (2003).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Romanowicz, B. & Gung, Y. Superplumes from the core-mantle boundary to the lithosphere: implications for heat flux. Science 296, 513–516 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dalton, C. A., Ekström, G. & Dziewonski, A. M. The global attenuation structure of the upper mantle. J. Geophys. Res. Solid Earth 113, B09303 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Karaoğlu, H. & Romanowicz, B. Inferring global upper-mantle shear attenuation structure by waveform tomography using the spectral element method. Geophys. J. Int. 213, 1536–1558 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Adenis, A., Debayle, E. & Ricard, Y. Attenuation tomography of the upper mantle. Geophys. Res. Lett. 44, 7715–7724 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Karato, S.-I. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20, 1623–1626 (1993).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Faul, U. H. & Jackson, I. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett. 234, 119–134 (2005).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Faul, U. H. & Jackson, I. Transient creep and strain energy dissipation: an experimental perspective. Annu. Rev. Earth Planet. Sci. 43, 541–569 (2015).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Dannberg, J. et al. The importance of grain size to mantle dynamics and seismological observations. Geochem. Geophys. Geosyst. 18, 3034–3061 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Torsvik, T. H. et al. Deep mantle structure as a reference frame for movements in and on the Earth. Proc. Natl Acad. Sci. USA 111, 8735–8740 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Koelemeijer, P., Ritsema, J., Deuss, A. & van Heijst, H. J. SP12RTS: a degree-12 model of shear-and compressional-wave velocity for Earth’s mantle. Geophys. J. Int. 204, 1024–1039 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Trampert, J., Deschamps, F., Resovsky, J. & Yuen, D. Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306, 853–856 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lau, H. C. P. et al. Tidal tomography constrains Earth’s deep-mantle buoyancy. Nature 551, 321 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • van Tent, R. et al. Reconciling 3-D mantle density models using recent normal-mode measurements and thermochemical convection modelling. In AGU Fall Meeting Abstracts, Vol. 2021, DI14A-05 (2021).

  • Richards, F. D., Hoggard, M. J., Ghelichkhan, S., Koelemeijer, P. & Lau, H. C. Geodynamic, geodetic, and seismic constraints favour deflated and dense-cored LLVPs. Earth Planet. Sci. Lett. 602, 117964 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, N., Zhong, S., Leng, W. & Li, Z.-X. A model for the evolution of the Earth’s mantle structure since the early Paleozoic. J. Geophys. Res. Solid Earth 115, B06401 (2010).

    ADS 

    Google Scholar
     

  • Cline II, C. J., Faul, U. H., David, E. C., Berry, A. J. & Jackson, I. Redox-influenced seismic properties of upper-mantle olivine. Nature 555, 355–358 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu, T., Jackson, I. & Faul, U. H. Low-frequency seismic properties of olivine-orthopyroxene mixtures. J. Geophys. Res. Solid Earth 126, e2021JB022504 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Romanowicz, B. Attenuation tomography of the Earth’s mantle: a review of current status. Pure Appl. Geophys. 153, 257–272 (1998).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Lawrence, J. F. & Wysession, M. E. Seismic evidence for subduction-transported water in the lower mantle. Geophys. Monogr. AGU 168, 251 (2006).

    ADS 
    MATH 

    Google Scholar
     

  • Hwang, Y. K. & Ritsema, J. Radial Qμ structure of the lower mantle from teleseismic body-wave spectra. Earth Planet. Sci. Lett. 303, 369–375 (2011).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Liu, C. & Grand, S. P. Seismic attenuation in the African LLSVP estimated from PcS phases. Earth Planet. Sci. Lett. 489, 8–16 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Deuss, A., Ritsema, J. & van Heijst, H. J. A new catalogue of normal-mode splitting function measurements up to 10 mHz. Geophys. J. Int. 193, 920–937 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Talavera-Soza, S. & Deuss, A. Constraining 3-D variations in mantle attenuation using normal modes: forward modelling and sensitivity tests. Geophys. J. Int. 233, 1097–1112 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Durek, J. J. & Ekström, G. A radial model of anelasticity consistent with long-period surface-wave attenuation. Bull. Seismol. Soc. Am. 86, 144–158 (1996).

    Article 
    MATH 

    Google Scholar
     

  • Debayle, E., Bodin, T., Durand, S. & Ricard, Y. Seismic evidence for partial melt below tectonic plates. Nature 586, 555–559 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Connolly, J. A. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Lau, H. C. & Faul, U. H. Anelasticity from seismic to tidal timescales: theory and observations. Earth Planet. Sci. Lett. 508, 18–29 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Barnhoorn, A., Jackson, I., Fitz Gerald, J., Kishimoto, A. & Itatani, K. Grain size-sensitive viscoelastic relaxation and seismic properties of polycrystalline MgO. J. Geophys. Res. Solid Earth 121, 4955–4976 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Webb, S., Jackson, I. & Gerald, J. F. Viscoelasticity of the titanate perovskites CaTiO3 and SrTiO3 at high temperature. Phys. Earth Planet. Inter. 115, 259–291 (1999).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Webb, S. & Jackson, I. Anelasticity and microcreep in polycrystalline MgO at high temperature: an exploratory study. Phys. Chem. Miner. 30, 157–166 (2003).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Glišović, P., Forte, A. M. & Ammann, M. W. Variations in grain size and viscosity based on vacancy diffusion in minerals, seismic tomography, and geodynamically inferred mantle rheology. Geophys. Res. Lett. 42, 6278–6286 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat. Geosci. 10, 236–240 (2017).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Fei, H. et al. Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump. Nature 619, 794–799 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Murakami, M., Ohishi, Y., Hirao, N. & Hirose, K. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature 485, 90–94 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Deschamps, F., Cobden, L. & Tackley, P. J. The primitive nature of large low shear-wave velocity provinces. Earth Planet. Sci. Lett. 349, 198–208 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Fei, H., Faul, U. H. & Katsura, T. The grain growth kinetics of bridgmanite at the topmost lower mantle. Earth Planet. Sci. Lett. 561, 116820 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Boioli, F. et al. Pure climb creep mechanism drives flow in Earth’s lower mantle. Sci. Adv. 3, e1601958 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition in MgSiO3. Science 304, 855–858 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oganov, A. R. & Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 430, 445–448 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Goryaeva, A. M., Carrez, P. & Cordier, P. Low viscosity and high attenuation in MgSiO3 post-perovskite inferred from atomic-scale calculations. Sci. Rep. 6, 34771 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cobden, L., Thomas, C. & Trampert, J. in The Earth’s Heterogeneous Mantle (eds Khan, A. & Deschamps, F.) 391–440 (Springer, 2015).

  • Lekić, V., Cottaar, S., Dziewonski, A. M. & Romanowicz, B. Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68–77 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Woodhouse, J. H. & Dahlen, F. A. The effect of a general aspherical perturbation on the free oscillations of the Earth. Geophys. J. Int. 53, 335–354 (1978).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Woodhouse, J. H. The coupling and attenuation of nearly resonant multiplets in the Earth’s free oscillation spectrum. Geophys. J. Int. 61, 261–283 (1980).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Masters, G., Laske, G. & Gilbert, F. Autoregressive estimation of the splitting matrix of free-oscillation multiplets. Geophys. J. Int. 141, 25–42 (2000).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Mäkinen, A. M. & Deuss, A. Normal mode splitting function measurements of anelasticity and attenuation in the Earth’s inner core. Geophys. J. Int. 194, 401–416 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Jagt, L. & Deuss, A. Comparing one-step full-spectrum inversion with two-step splitting function inversion in normal mode tomography. Geophys. J. Int. 227, 559–575 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Woodhouse, J. H. & Giardini, D. Inversion for the splitting function of isolated low order normal mode multiplets. Eos Trans. AGU 66, 300 (1985).

    MATH 

    Google Scholar
     

  • Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Tarantola, A. & Valette, B. Generalized nonlinear inverse problems solved using the least squares criterion. Rev. Geophys. 20, 219–232 (1982).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 286, 1925–1928 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mooney, W., Laske, G. & Masters, G. CRUST5.1: a global model at 5 degrees by 5 degrees. J. Geophys. Res 102, 727–748 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Talavera-Soza, S. Observing Seismic Attenuation in the Earth’s Mantle and Inner Core Using Normal Modes. PhD thesis, Utrecht Univ. (2021); https://doi.org/10.33540/738.

  • Mégnin, C. & Romanowicz, B. The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms. Geophys. J. Int. 143, 709–728 (2000).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Dalton, C. A. & Faul, U. H. The oceanic and cratonic upper mantle: clues from joint interpretation of global velocity and attenuation models. Lithos 120, 160–172 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Irifune, T. & Ringwood, A. Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab. Earth Planet. Sci. Lett. 86, 365–376 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Palme, H. & Nickel, K. CaAl ratio and composition of the Earth’s upper mantle. Geochim. Cosmochim. Acta. 49, 2123–2132 (1985).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Perrillat, J.-P. et al. Phase transformations of subducted basaltic crust in the upmost lower mantle. Phys. Earth Planet. Inter. 157, 139–149 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cobden, L., Goes, S., Cammarano, F. & Connolly, J. A. Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity. Geophys. J. Int. 175, 627–648 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Houser, C., Hernlund, J., Valencia-Cardona, J. & Wentzcovitch, R. Discriminating lower mantle composition. Phys. Earth Planet. Inter. 308, 106552 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cobden, L. et al. Thermochemical interpretation of 1-D seismic data for the lower mantle: The significance of nonadiabatic thermal gradients and compositional heterogeneity. J. Geophys. Res. Solid Earth 114, B11309 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals — I. Physical properties. Geophys. J. Int. 162, 610–632 (2005).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Raj, R. & Ashby, M. On grain boundary sliding and diffusional creep. Metall. Trans. 2, 1113–1127 (1971).

    Article 
    MATH 

    Google Scholar
     

  • Raj, R. Transient behavior of diffusion-induced creep and creep rupture. Metall. Trans. 6, 1499–1509 (1975).

    Article 
    MATH 

    Google Scholar
     

  • Kanamori, H. & Anderson, D. L. Importance of physical dispersion in surface wave and free oscillation problems. Rev. Geophys. 15, 105–112 (1977).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Beyreuther, M. et al. ObsPy: a Python toolbox for seismology. Seismol. Res. Lett. 81, 530–533 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Schneider, S., Talavera-Soza, S., Jagt, L. & Deuss, A. FrosPy: free oscillation Python toolbox for seismology. Seismol. Res. Lett. 93, 967–974 (2022).

    Article 

    Google Scholar
     

  • Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).

  • Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. & Wobbe, F. Generic mapping tools: improved version released. Eos 94, 409–410 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Talavera-Soza, S. & Deuss, A. QS4L3: global 3D model of mantle attenuation using seismic normal modes. Zenodo https://doi.org/10.5281/zenodo.8247621 (2023).

  • Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1027 (2003).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Widmer-Schnidrig, R., Masters, G. & Gilbert, F. Spherically symmetric attenuation within the Earth from normal mode data. Geophys. J. Int. 104, 541–553 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Resovsky, J., Trampert, J. & van der Hilst, R. D. Error bars for the global seismic Q profile. Earth Planet. Sci. Lett. 230, 413–423 (2005).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Jordan, T. H. Global tectonic regionalization for seismological data analysis. Bull. Seismol. Soc. Am. 71, 1131–1141 (1981).

    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments