Friday, February 13, 2026
No menu items!
HomeNatureGiant magnetocaloric effect and spin supersolid in a metallic dipolar magnet

Giant magnetocaloric effect and spin supersolid in a metallic dipolar magnet

  • Xiang, J. et al. Giant magnetocaloric effect in spin supersolid candidate Na2BaCo(PO4)2. Nature 625, 270–275 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Sov. Phys. JETP 29, 1107–1113 (1969).

    ADS 

    Google Scholar
     

  • Leggett, A. J. Can a solid be “superfluid”? Phys. Rev. Lett. 25, 1543–1546 (1970).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chester, G. V. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Penrose, O. & Onsager, L. Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, E. & Chan, M. H. W. Probable observation of a supersolid helium phase. Nature 427, 225–227 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D. Y. & Chan, M. H. W. Absence of supersolidity in solid helium in porous Vycor glass. Phys. Rev. Lett. 109, 155301 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Boninsegni, M. & Prokof’ev, N. Supersolid phase of hard-core bosons on a triangular lattice. Phys. Rev. Lett. 95, 237204 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wessel, S. & Troyer, M. Supersolid hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127205 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Heidarian, D. & Damle, K. Persistent supersolid phase of hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127206 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Melko, R. G. et al. Supersolid order from disorder: hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127207 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J.-R. et al. A stripe phase with supersolid properties in spin-orbit-coupled Bose-Einstein condensates. Nature 543, 91–94 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357–361 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sengupta, P. & Batista, C. D. Field-induced supersolid phase in spin-one Heisenberg models. Phys. Rev. Lett. 98, 227201 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sengupta, P. & Batista, C. D. Spin supersolid in an anisotropic spin-one Heisenberg chain. Phys. Rev. Lett. 99, 217205 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Y. et al. Spin supersolidity in nearly ideal easy-axis triangular quantum antiferromagnet Na2BaCo(PO4)2. npj Quantum Mater. 7, 89 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Plaquette singlet transition, magnetic barocaloric effect, and spin supersolidity in the Shastry-Sutherland model. Phys. Rev. Lett. 131, 116702 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, T. et al. Phase diagram and spectroscopic signatures of supersolids in quantum Ising magnet K2Co(SeO3)2. Preprint at arxiv.org/abs/2402.15869 (2024).

  • Zhu, M. et al. Continuum excitations in a spin supersolid on a triangular lattice. Phys. Rev. Lett. 133, 186704 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Y. et al. Double magnon-roton excitations in the triangular-lattice spin supersolid. Phys. Rev. B 110, 214408 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sheng, J. et al. Continuum of spin excitations in an ordered magnet. Innovation 6, 100769 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popescu, T. I. et al. Zeeman split Kramers doublets in spin-supersolid candidate Na2BaCo(PO4)2. Phys. Rev. Lett. 134, 136703 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chi, R., Hu, J., Liao, H.-J. & Xiang, T. Dynamical spectra of spin supersolid states in triangular antiferromagnets. Phys. Rev. B 110, L180404 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gao, Y., Huang, Y., Maekawa, S. & Li, W. Spin Seebeck effect of triangular lattice spin supersolid. Phys. Rev. Lett. 135, 236504 (2025).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Tokiwa, Y. et al. Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures. Commun. Mater. 2, 42 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X.-Y. et al. Quantum spin liquid candidate as superior refrigerant in cascade demagnetization cooling. Commun. Phys. 5, 233 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wikus, P., Canavan, E., Heine, S. T., Matsumoto, K. & Numazawa, T. Magnetocaloric materials and the optimization of cooling power density. Cryogenics 62, 150–162 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shirron, P. J. Applications of the magnetocaloric effect in single-stage, multi-stage and continuous adiabatic demagnetization refrigerators. Cryogenics 62, 130–139 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Z., Barros, K., Chern, G.-W., Maslov, D. L. & Batista, C. D. Resistivity minimum in highly frustrated itinerant magnets. Phys. Rev. Lett. 117, 206601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhu, L., Garst, M., Rosch, A. & Si, Q. Universally diverging Grüneisen parameter and the magnetocaloric effect close to quantum critical points. Phys. Rev. Lett. 91, 066404 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Garst, M. & Rosch, A. Sign change of the Grüneisen parameter and magnetocaloric effect near quantum critical points. Phys. Rev. B 72, 205129 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Van Sciver, S. W. in Helium Cryogenics 2nd edn, Ch. 2, 19–47 (Springer, 2012).

  • Pobell, F. Matter and Methods at Low Temperatures 3rd edn (Springer, 2007).

  • Li, N. et al. Possible itinerant excitations and quantum spin state transitions in the effective spin-1/2 triangular-lattice antiferromagnet Na2BaCo(PO4)2. Nat. Commun. 11, 4216 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tokiwa, Y. et al. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling. Sci. Adv. 2, e1600835 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruner, T. et al. Metallic local-moment magnetocalorics as a route to cryogenic refrigeration. Commun. Mater. 5, 63 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jang, D. et al. Large magnetocaloric effect and adiabatic demagnetization refrigeration with YbPt2Sn. Nat. Commun. 6, 8680 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimura, Y. et al. Magnetic refrigeration down to 0.2 K by heavy fermion metal YbCu4Ni. J. Appl. Phys. 131, 013903 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. YbNi4Mg: superheavy fermion with enhanced Wilson ratio and magnetocaloric effect. Phys. Rev. Mater. 9, 014402 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Sub-kelvin magnetocaloric effect in frustrated intermetallic NdNi4Mg. J. Appl. Phys. 138, 063903 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Watanabe, K., Shimura, Y., Umeo, K., Onimaru, T. & Takabatake, T. Minimization of temperature reached by adiabatic demagnetization refrigeration in Ce-based intermetallic Ce2(Cu1−xNix)2In. Appl. Phys. Lett. 126, 092401 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, L. S. et al. Orbital-exchange and fractional quantum number excitations in an f-electron metal, Yb2Pt2Pb. Science 352, 1206–1210 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. Y. et al. Frustrated spin-1/2 chains in a correlated metal. Nat. Mater. 24, 716–721 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J., Rabus, A., Lee-Hone, N. R., Broun, D. M. & Mun, E. The two-dimensional metallic triangular lattice antiferromagnet CeCd3P3. Phys. Rev. B 99, 245159 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cho, A. Helium-3 shortage could put freeze on low-temperature research. Science 326, 778–779 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kramer, D. Helium users are at the mercy of suppliers. Phys. Today 72, 26–29 (2019).

    ADS 

    Google Scholar
     

  • Osato, K. et al. Quantum criticality in YbCu4Ni. Phys. Rev. B 109, 024435 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kaczorowski, D., Rogl, P. & Hiebl, K. Magnetic behavior in a series of cerium ternary intermetallics: Ce2T2In (T = Ni, Cu, Rh, Pd, Pt, and Au). Phys. Rev. B 54, 9891–9902 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Turban, K. & Schäfer, H. Zur kenntnis des BaFe2Al9-strukturtyps: Ternäre aluminide at2Al9 MIT A = Ba, Sr und T = Fe, Co, Ni. J. Less Common Met. 40, 91–96 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Vajenine, G. V. & Hoffmann, R. Magic electron counts for networks of condensed clusters: vertex-sharing aluminum octahedra. J. Am. Chem. Soc. 120, 4200–4208 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thiede, V. M. T. & Jeitschko, W. Crystal structure of europium cobalt aluminide (1/2/9), EuCo2Al9. Z. Kristallogr. New Cryst. Struct. 214, 149–150 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Meier, W. R. et al. A catastrophic charge density wave in BaFe2Al9. Chem. Mater. 33, 2855–2863 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, L., Shi, X., Jiao, Y., Yang, J. & Wang, Z. SpinToolkit v.1.4.2. GitHub https://github.com/spintoolkit-dev/SpinToolkit_py (2026).

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Pippard, A. B. Magnetoresistance in Metals (Cambridge Univ. Press, 1989).

  • Wang, Z. & Batista, C. D. Resistivity minimum in diluted metallic magnets. Phys. Rev. B 101, 184432 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, H. et al. Kosterlitz-Thouless melting of magnetic order in the triangular quantum Ising material TmMgGaO4. Nat. Commun. 11, 1111 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Z. et al. Evidence of the Berezinskii-Kosterlitz-Thouless phase in a frustrated magnet. Nat. Commun. 11, 5631 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tokiwa, Y., Radu, T., Geibel, C., Steglich, F. & Gegenwart, P. Divergence of the magnetic Grüneisen ratio at the field-induced quantum critical point in YbRh2Si2. Phys. Rev. Lett. 102, 066401 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhitomirsky, M. E. & Honecker, A. Magnetocaloric effect in one-dimensional antiferromagnets. J. Stat. Mech. 2004, 07012 (2004).

    Article 

    Google Scholar
     

  • Honecker, A. & Wessel, S. Magnetocaloric effect in quantum spin-S chains. Condens. Matter Phys. 12, 399–410 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Wolf, B. et al. Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point. Proc. Natl Acad. Sci. USA 108, 6862–6866 (2011).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wolf, B. et al. Magnetic cooling close to a quantum phase transition—the case of Er2Ti2O7. J. Appl. Phys 120, 142112 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Xiang, J.-S. et al. Criticality-enhanced magnetocaloric effect in quantum spin chain material copper nitrate. Sci. Rep. 7, 44643 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. et al. Significant inverse magnetocaloric effect induced by quantum criticality. Phys. Rev. Res. 3, 033094 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, H. et al. Magnetocaloric effect of topological excitations in Kitaev magnets. Nat. Commun. 15, 7011 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagmann, C. & Richards, P. L. Two-stage magnetic refrigerator for astronomical applications with reservoir temperatures above 4 K. Cryogenics 34, 221–226 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments