Chu, B. et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006).
Li, Q. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).
Chen, J. et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615, 62–66 (2023).
Li, H. et al. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50, 6369–6400 (2021).
Rui, G., Bernholc, J., Zhang, S. & Zhang, Q. M. Dilute nanocomposites: tuning polymer chain local nanostructures to enhance dielectric responses. Adv. Mater. 36, 2311739 (2024).
Wu, X., Chen, X., Zhang, Q. M. & Tan, D. Q. Advanced dielectric polymers for energy storage. Energy Storag. Mater. 44, 29–47 (2022).
Yang, M. et al. Polymer nanocomposite dielectrics for capacitive energy storage. Nat. Nanotechnol. 19, 588–603 (2024).
Yang, M. et al. Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200 °C. Nat. Energy 9, 143–153 (2024).
Wu, C. et al. Flexible temperature-invariant polymer dielectrics with large bandgap. Adv. Mater. 32, 2000499 (2020).
Li, H. et al. Machine learning-accelerated discovery of heat-resistant polysulfates for electrostatic energy storage. Nat. Energy 10, 90–100 (2025).
Wang, R. et al. Dielectric polymers with mechanical bonds for high-temperature capacitive energy storage. Nat. Mater. 24, 1017–1081 (2025).
Yuan, C. et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11, 3919 (2020).
Zhang, Q., Xie, Q., Wang, T., Huang, S. & Zhang, Q. M. Scalable all polymer dielectrics with self-assembled nanoscale multiboundary exhibiting superior high temperature capacitive performance. Nat. Commun. 15, 9351 (2024).
Yang, M. et al. Surface ions-activated polymer composites dielectrics for superior high-temperature capacitive energy storage. Energy Environ. Sci. 17, 1592–1602 (2024).
Flory, P. J. Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942).
Huggins, M. L. Solutions of long chain compounds. J. Chem. Phys. 9, 440–440 (1941).
Bates, F. S. Polymer–polymer phase behavior. Science 251, 898–905 (1991).
Yang, M., Zhou, L., Li, X., Ren, W. & Shen, Y. Polyimides physically crosslinked by aromatic molecules exhibit ultrahigh energy density at 200 °C. Adv. Mater. 35, 2302392 (2023).
Chen, J. et al. Linear dielectric polymers with ferroelectric-like crystals for high-temperature capacitive energy storage. Adv. Mater. 37, 2417072 (2025).
Yang, M. et al. Quantum size effect to induce colossal high-temperature energy storage density and efficiency in polymer/inorganic cluster composites. Adv. Mater. 35, 2301936 (2023).
Yang, M., Ren, W., Jin, Z., Xu, E. & Shen, Y. Enhanced high-temperature energy storage performances in polymer dielectrics by synergistically optimizing band-gap and polarization of dipolar glass. Nat. Commun. 15, 8647 (2024).
Wang, R. et al. Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage. Nat. Commun. 14, 2406 (2023).
Xu, W. et al. Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C. Energy Environ. Sci. 17, 8866–8873 (2024).
Hao, J. et al. Stereoisomerism of vicinal polydichloronorbornene for ultra-high-temperature capacitive energy storage. Adv. Mater. 37, 2417625 (2025).
Christodoulides, C. Determination of activation energies by using the widths of peaks of thermoluminescence and thermally stimulated depolarisation currents. J. Phys. D 18, 1501 (1985).
Zhang, T. et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 6, eaax6622 (2020).
Fox, T. G. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phys. Soc. 1, 123 (1952).
Kim, G.-H. et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015).
Rong, W., Fan, Z., Yu, Y., Bu, H. & Wang, M. Influence of entanglements on glass transition of atactic polystyrene. J. Polym. Sci. B Polym. Phys. 43, 2243–2251 (2005).
Frisch, M. et al. Gaussian 09, Revision D. 01 (Gaussian, Inc., 2009).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theoret. Chim. Acta 44, 129–138 (1977).
Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015).
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

