Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311, 1270–1271 (2006).
Neese, B. et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821–823 (2008).
Bhalla, A. S., Guo, R. & Roy, R. The perovskite structure—a review of its role in ceramic science and technology. Mater. Res. Innov. 4, 3–26 (2000).
Qi, H., Chen, L., Deng, S. & Chen, J. High-entropy ferroelectric materials. Nat. Rev. Mater. 8, 355–356 (2023).
Shi, J. et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule 3, 1200–1225 (2019).
Hou, H., Qian, S. & Takeuchi, I. Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022).
Lin, Y. et al. A full solid-state conceptual magnetocaloric refrigerator based on hybrid regeneration. The Innovation 5, 100645 (2024).
Hou, R. et al. Continuous operating elastocaloric air-cooling device. Innov. Energy 1, 100026 (2024).
Moya, X. & Mathur, N. D. A hot future for cool materials. Front. Energy 17, 447–449 (2023).
Li, J. et al. High cooling performance in a double-loop electrocaloric heat pump. Science 382, 801–805 (2023).
Sinyavsky, Y. V. & Brodyansky, V. M. Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectrics 131, 321–325 (1992).
Nair, B. et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 575, 468–472 (2019).
Torelló, A. et al. Giant temperature span in electrocaloric regenerator. Science 370, 125–129 (2020).
Wang, Y. et al. A high-performance solid-state electrocaloric cooling system. Science 370, 129–133 (2020).
Tušek, J. A highly efficient solid-state heat pump. Science 382, 769–770 (2023).
Metzdorf, J. et al. Electrocaloric cooling system utilizing latent heat transfer for high power density. Commun. Eng. 3, 55 (2024).
Qian, X. et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 600, 664–669 (2021).
Zheng, S. et al. Colossal electrocaloric effect in an interface-augmented ferroelectric polymer. Science 382, 1020–1026 (2023).
Hu, J. et al. Superhard bulk high-entropy carbides with enhanced toughness via metastable in-situ particles. Nat. Commun. 14, 5717 (2023).
Yang, B. et al. Engineering relaxors by entropy for high energy storage performance. Nat. Energy 8, 956–964 (2023).
Pu, Y. et al. (Mg,Mn,Fe,Co,Ni)O: a rocksalt high-entropy oxide containing divalent Mn and Fe. Sci. Adv. 9, eadi8809 (2023).
Lei, X. et al. High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nat. Sustain. 6, 816–826 (2023).
Jiang, B. et al. Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nat. Commun. 12, 3234 (2021).
Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).
Yang, B. et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 21, 1074–1080 (2022).
Shaobo, L. & Yanqiu, L. Research on the electrocaloric effect of PMN/PT solid solution for ferroelectrics MEMS microcooler. Mater. Sci. Eng. B 113, 46–49 (2004).
Wang, J. et al. Nonadiabatic direct measurement electrocaloric effect in lead-free Ba,Ca(Zr,Ti)O3 ceramics. J. Alloys Compd. 550, 561–563 (2013).
Peräntie, J., Tailor, H. N., Hagberg, J., Jantunen, H. & Ye, Z. G. Electrocaloric properties in relaxor ferroelectric (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 system. J. Appl. Phys. 114, 174105 (2013).
Qian, X.-S. et al. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Adv. Funct. Mater. 24, 1300–1305 (2014).
Cao, W. P. et al. Enhanced electrocaloric effect in lead-free NBT-based ceramics. Ceram. Int. 40, 9273–9278 (2014).
Zhang, X. et al. Large electrocaloric effect in Ba(Ti1−xSnx)O3 ceramics over a broad temperature region. AIP Adv. 5, 047134 (2015).
Le Goupil, F. et al. Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics. Appl. Phys. Lett. 107, 172903 (2015).
Cao, W. P. et al. Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc. 36, 593–600 (2016).
Wang, X. et al. Large electrocaloric strength and broad electrocaloric temperature span in lead-free Ba0.85Ca0.15Ti1−xHfxO3 ceramics. RSC Adv. 7, 5813–5820 (2017).
Wu, H. H. & Cohen, R. E. Electric-field-induced phase transition and electrocaloric effect in PMN-PT. Phys. Rev. B 96, 054116 (2017).
Li, M.-D. et al. Large electrocaloric effect in lead-free Ba(HfxTi1–x)O3 ferroelectric ceramics for clean energy applications. ACS Sustain. Chem. Eng. 6, 8920–8925 (2018).
Kumar, R. & Singh, S. Enhanced electrocaloric response and high energy-storage properties in lead-free (1−x) (K0.5Na0.5)NbO3−xSrZrO3 nanocrystalline ceramics. J. Alloys Compd. 764, 289–294 (2018).
Du, H. et al. Ultrahigh room temperature electrocaloric response in lead-free bulk ceramics via tape casting. J. Mater. Chem. C 7, 6860–6866 (2019).
Yang, J. & Hao, X. Electrocaloric effect and pyroelectric performance in (K,Na)NbO3-based lead-free ceramics. J. Am. Ceram. Soc. 102, 6817–6826 (2019).
Yang, J., Zhao, Y., Lou, X., Wu, J. & Hao, X. Synergistically optimizing electrocaloric effects and temperature span in KNN-based ceramics utilizing a relaxor multiphase boundary. J. Mater. Chem. C 8, 4030–4039 (2020).
Yang, C. et al. Toward multifunctional electronics: flexible NBT-based film with a large electrocaloric effect and high energy storage property. ACS Appl. Mater. Interfaces 12, 6082–6089 (2020).
Niu, X. et al. Enhanced electrocaloric effect at room temperature in Mn2+ doped lead-free (BaSr)TiO3 ceramics via a direct measurement. J. Adv. Ceram. 10, 482–492 (2021).
Nouchokgwe, Y. et al. Giant electrocaloric materials energy efficiency in highly ordered lead scandium tantalate. Nat. Commun. 12, 3298 (2021).
Yin, R. et al. Emergent enhanced electrocaloric effect within wide temperature span in laminated composite ceramics. Adv. Funct. Mater. 32, 2108182 (2022).
Du, F. et al. Multi-element B-site substituted perovskite ferroelectrics exhibit enhanced electrocaloric effect. Sci. China Technol. Sci. 66, 1119–1128 (2023).
Feng, X. et al. Enhanced electrocaloric effect in KNN-based ceramic via polymorphic phase transition. Ceram. Int. 50, 1788–1794 (2024).
Moya, X. et al. Giant electrocaloric strength in single-crystal BaTiO3. Adv. Mater. 25, 1360–1365 (2013).
Zhao, Y., Hao, X. & Zhang, Q. Energy-storage properties and electrocaloric effect of Pb(1–3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl. Mater. Interfaces 6, 11633–11639 (2014).
Zou, K. et al. Giant room-temperature electrocaloric effect of polymer–ceramic composites with orientated BaSrTiO3 nanofibers. Nano Lett. 22, 6560–6566 (2022).
Cai, W., Fan, Y., Gao, J., Fu, C. & Deng, X. Microstructure, dielectric properties and diffuse phase transition of barium stannate titanate ceramics. J. Mater. Sci. Mater. Electron. 22, 265–272 (2011).
Tang, X. G., Chew, K. H. & Chan, H. L. W. Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics. Acta Mater. 52, 5177–5183 (2004).
Schilling, A. et al. Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics. Phys. Rev. B 74, 024115 (2006).
Nelson, C. T. et al. Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011).
Zhang, Y., Yu, R. & Zhu, J. Displacement separation analysis from atomic-resolution images. Ultramicroscopy 232, 113404 (2022).
Chen, L. et al. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat. Commun. 13, 3089 (2022).
Vakhrushev, S., Nabereznov, A., Sinha, S. K., Feng, Y. P. & Egami, T. Synchrotron X-ray scattering study of lead magnoniobate relaxor ferroelectric crystals. J. Phys. Chem. Solids 57, 1517–1523 (1996).
Chapman, B. D. et al. Diffuse X-ray scattering in perovskite ferroelectrics. Phys. Rev. B 71, 020102 (2005).
Androš Dubraja, L., Kruk, R. & Brezesinski, T. Robust macroscopic polarization of block copolymer-templated mesoporous perovskite-type thin-film ferroelectrics. Adv. Electron. Mater. 5, 1800287 (2019).
Denev, S. A., Lummen, T. T. A., Barnes, E., Kumar, A. & Gopalan, V. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc. 94, 2699–2727 (2011).
Guo, D. et al. Electrocaloric characterization of a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer by infrared imaging. Appl. Phys. Lett. 105, 031906 (2014).
Molin, C. et al. Comparison of direct electrocaloric characterization methods exemplified by 0.92 Pb(Mg1/3Nb2/3)O3-0.08 PbTiO3 multilayer ceramics. J. Am. Ceram. Soc. 100, 2885–2892 (2017).
Prah, U. et al. Direct electrocaloric characterization of ceramic films. Small Methods 7, 2300212 (2023).
Chen, L.-Q. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113–140 (2002).
Li, Y., Cross, L. E. & Chen, L.-Q. A phenomenological thermodynamic potential for BaTiO3 single crystals. J. Appl. Phys. 98, 064101 (2005).
Chen, L.-Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91, 1835–1844 (2008).
Li, B. et al. Domain wall contribution to the electrocaloric effect in BaTiO3 nanoparticle: a phase-field investigation. J. Nanopart. Res. 15, 1427 (2013).
Gao, R., Shi, X., Wang, J. & Huang, H. Understanding electrocaloric cooling of ferroelectrics guided by phase-field modeling. J. Am. Ceram. Soc. 105, 3689–3714 (2022).
Lei, C. H. & Liu, Y. Correlations between local electrocaloric effect and domains in ferroelectric crystals. Appl. Phys. Lett. 121, 102902 (2022).