Saturday, April 12, 2025
No menu items!
HomeNatureGiant electrocaloric effect in high-polar-entropy perovskite oxides

Giant electrocaloric effect in high-polar-entropy perovskite oxides

  • Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311, 1270–1271 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Neese, B. et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821–823 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bhalla, A. S., Guo, R. & Roy, R. The perovskite structure—a review of its role in ceramic science and technology. Mater. Res. Innov. 4, 3–26 (2000).

    Article 

    Google Scholar
     

  • Qi, H., Chen, L., Deng, S. & Chen, J. High-entropy ferroelectric materials. Nat. Rev. Mater. 8, 355–356 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Shi, J. et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule 3, 1200–1225 (2019).

    Article 

    Google Scholar
     

  • Hou, H., Qian, S. & Takeuchi, I. Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Y. et al. A full solid-state conceptual magnetocaloric refrigerator based on hybrid regeneration. The Innovation 5, 100645 (2024).

  • Hou, R. et al. Continuous operating elastocaloric air-cooling device. Innov. Energy 1, 100026 (2024).

    Article 

    Google Scholar
     

  • Moya, X. & Mathur, N. D. A hot future for cool materials. Front. Energy 17, 447–449 (2023).

    Article 

    Google Scholar
     

  • Li, J. et al. High cooling performance in a double-loop electrocaloric heat pump. Science 382, 801–805 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sinyavsky, Y. V. & Brodyansky, V. M. Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectrics 131, 321–325 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Nair, B. et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 575, 468–472 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Torelló, A. et al. Giant temperature span in electrocaloric regenerator. Science 370, 125–129 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. A high-performance solid-state electrocaloric cooling system. Science 370, 129–133 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tušek, J. A highly efficient solid-state heat pump. Science 382, 769–770 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Metzdorf, J. et al. Electrocaloric cooling system utilizing latent heat transfer for high power density. Commun. Eng. 3, 55 (2024).

    Article 
    PubMed Central 

    Google Scholar
     

  • Qian, X. et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 600, 664–669 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zheng, S. et al. Colossal electrocaloric effect in an interface-augmented ferroelectric polymer. Science 382, 1020–1026 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hu, J. et al. Superhard bulk high-entropy carbides with enhanced toughness via metastable in-situ particles. Nat. Commun. 14, 5717 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, B. et al. Engineering relaxors by entropy for high energy storage performance. Nat. Energy 8, 956–964 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Pu, Y. et al. (Mg,Mn,Fe,Co,Ni)O: a rocksalt high-entropy oxide containing divalent Mn and Fe. Sci. Adv. 9, eadi8809 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei, X. et al. High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nat. Sustain. 6, 816–826 (2023).

    Article 

    Google Scholar
     

  • Jiang, B. et al. Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nat. Commun. 12, 3234 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yang, B. et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 21, 1074–1080 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shaobo, L. & Yanqiu, L. Research on the electrocaloric effect of PMN/PT solid solution for ferroelectrics MEMS microcooler. Mater. Sci. Eng. B 113, 46–49 (2004).

    Article 

    Google Scholar
     

  • Wang, J. et al. Nonadiabatic direct measurement electrocaloric effect in lead-free Ba,Ca(Zr,Ti)O3 ceramics. J. Alloys Compd. 550, 561–563 (2013).

    Article 

    Google Scholar
     

  • Peräntie, J., Tailor, H. N., Hagberg, J., Jantunen, H. & Ye, Z. G. Electrocaloric properties in relaxor ferroelectric (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 system. J. Appl. Phys. 114, 174105 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Qian, X.-S. et al. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Adv. Funct. Mater. 24, 1300–1305 (2014).

    Article 

    Google Scholar
     

  • Cao, W. P. et al. Enhanced electrocaloric effect in lead-free NBT-based ceramics. Ceram. Int. 40, 9273–9278 (2014).

    Article 

    Google Scholar
     

  • Zhang, X. et al. Large electrocaloric effect in Ba(Ti1−xSnx)O3 ceramics over a broad temperature region. AIP Adv. 5, 047134 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Le Goupil, F. et al. Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics. Appl. Phys. Lett. 107, 172903 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Cao, W. P. et al. Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc. 36, 593–600 (2016).

    Article 

    Google Scholar
     

  • Wang, X. et al. Large electrocaloric strength and broad electrocaloric temperature span in lead-free Ba0.85Ca0.15Ti1−xHfxO3 ceramics. RSC Adv. 7, 5813–5820 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wu, H. H. & Cohen, R. E. Electric-field-induced phase transition and electrocaloric effect in PMN-PT. Phys. Rev. B 96, 054116 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Li, M.-D. et al. Large electrocaloric effect in lead-free Ba(HfxTi1–x)O3 ferroelectric ceramics for clean energy applications. ACS Sustain. Chem. Eng. 6, 8920–8925 (2018).

    Article 

    Google Scholar
     

  • Kumar, R. & Singh, S. Enhanced electrocaloric response and high energy-storage properties in lead-free (1−x) (K0.5Na0.5)NbO3−xSrZrO3 nanocrystalline ceramics. J. Alloys Compd. 764, 289–294 (2018).

    Article 

    Google Scholar
     

  • Du, H. et al. Ultrahigh room temperature electrocaloric response in lead-free bulk ceramics via tape casting. J. Mater. Chem. C 7, 6860–6866 (2019).

    Article 

    Google Scholar
     

  • Yang, J. & Hao, X. Electrocaloric effect and pyroelectric performance in (K,Na)NbO3-based lead-free ceramics. J. Am. Ceram. Soc. 102, 6817–6826 (2019).

    Article 

    Google Scholar
     

  • Yang, J., Zhao, Y., Lou, X., Wu, J. & Hao, X. Synergistically optimizing electrocaloric effects and temperature span in KNN-based ceramics utilizing a relaxor multiphase boundary. J. Mater. Chem. C 8, 4030–4039 (2020).

    Article 

    Google Scholar
     

  • Yang, C. et al. Toward multifunctional electronics: flexible NBT-based film with a large electrocaloric effect and high energy storage property. ACS Appl. Mater. Interfaces 12, 6082–6089 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Niu, X. et al. Enhanced electrocaloric effect at room temperature in Mn2+ doped lead-free (BaSr)TiO3 ceramics via a direct measurement. J. Adv. Ceram. 10, 482–492 (2021).

    Article 

    Google Scholar
     

  • Nouchokgwe, Y. et al. Giant electrocaloric materials energy efficiency in highly ordered lead scandium tantalate. Nat. Commun. 12, 3298 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, R. et al. Emergent enhanced electrocaloric effect within wide temperature span in laminated composite ceramics. Adv. Funct. Mater. 32, 2108182 (2022).

    Article 

    Google Scholar
     

  • Du, F. et al. Multi-element B-site substituted perovskite ferroelectrics exhibit enhanced electrocaloric effect. Sci. China Technol. Sci. 66, 1119–1128 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Feng, X. et al. Enhanced electrocaloric effect in KNN-based ceramic via polymorphic phase transition. Ceram. Int. 50, 1788–1794 (2024).

    Article 

    Google Scholar
     

  • Moya, X. et al. Giant electrocaloric strength in single-crystal BaTiO3. Adv. Mater. 25, 1360–1365 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, Y., Hao, X. & Zhang, Q. Energy-storage properties and electrocaloric effect of Pb(1–3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl. Mater. Interfaces 6, 11633–11639 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Zou, K. et al. Giant room-temperature electrocaloric effect of polymer–ceramic composites with orientated BaSrTiO3 nanofibers. Nano Lett. 22, 6560–6566 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cai, W., Fan, Y., Gao, J., Fu, C. & Deng, X. Microstructure, dielectric properties and diffuse phase transition of barium stannate titanate ceramics. J. Mater. Sci. Mater. Electron. 22, 265–272 (2011).

    Article 

    Google Scholar
     

  • Tang, X. G., Chew, K. H. & Chan, H. L. W. Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics. Acta Mater. 52, 5177–5183 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Schilling, A. et al. Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics. Phys. Rev. B 74, 024115 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Nelson, C. T. et al. Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Yu, R. & Zhu, J. Displacement separation analysis from atomic-resolution images. Ultramicroscopy 232, 113404 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat. Commun. 13, 3089 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vakhrushev, S., Nabereznov, A., Sinha, S. K., Feng, Y. P. & Egami, T. Synchrotron X-ray scattering study of lead magnoniobate relaxor ferroelectric crystals. J. Phys. Chem. Solids 57, 1517–1523 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Chapman, B. D. et al. Diffuse X-ray scattering in perovskite ferroelectrics. Phys. Rev. B 71, 020102 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Androš Dubraja, L., Kruk, R. & Brezesinski, T. Robust macroscopic polarization of block copolymer-templated mesoporous perovskite-type thin-film ferroelectrics. Adv. Electron. Mater. 5, 1800287 (2019).

    Article 

    Google Scholar
     

  • Denev, S. A., Lummen, T. T. A., Barnes, E., Kumar, A. & Gopalan, V. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc. 94, 2699–2727 (2011).

    Article 

    Google Scholar
     

  • Guo, D. et al. Electrocaloric characterization of a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer by infrared imaging. Appl. Phys. Lett. 105, 031906 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Molin, C. et al. Comparison of direct electrocaloric characterization methods exemplified by 0.92 Pb(Mg1/3Nb2/3)O3-0.08 PbTiO3 multilayer ceramics. J. Am. Ceram. Soc. 100, 2885–2892 (2017).

    Article 

    Google Scholar
     

  • Prah, U. et al. Direct electrocaloric characterization of ceramic films. Small Methods 7, 2300212 (2023).

    Article 

    Google Scholar
     

  • Chen, L.-Q. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113–140 (2002).

    Article 

    Google Scholar
     

  • Li, Y., Cross, L. E. & Chen, L.-Q. A phenomenological thermodynamic potential for BaTiO3 single crystals. J. Appl. Phys. 98, 064101 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Chen, L.-Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91, 1835–1844 (2008).

    Article 

    Google Scholar
     

  • Li, B. et al. Domain wall contribution to the electrocaloric effect in BaTiO3 nanoparticle: a phase-field investigation. J. Nanopart. Res. 15, 1427 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gao, R., Shi, X., Wang, J. & Huang, H. Understanding electrocaloric cooling of ferroelectrics guided by phase-field modeling. J. Am. Ceram. Soc. 105, 3689–3714 (2022).

    Article 

    Google Scholar
     

  • Lei, C. H. & Liu, Y. Correlations between local electrocaloric effect and domains in ferroelectric crystals. Appl. Phys. Lett. 121, 102902 (2022).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments