Monday, March 31, 2025
No menu items!
HomeNatureGenome-wide CRISPR screen in human T cells reveals regulators of FOXP3

Genome-wide CRISPR screen in human T cells reveals regulators of FOXP3

  • Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Raffin, C., Vo, L. T. & Bluestone, J. A. Treg cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Sakaguchi, S. Taking regulatory T cells into medicine. J. Exp. Med. 218, e20210831 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kanamori, M., Nakatsukasa, H., Okada, M., Lu, Q. & Yoshimura, A. Induced regulatory T cells: their development, stability, and applications. Trends Immunol. 37, 803–811 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Floess, S. et al. Epigenetic control of the Foxp3 locus in regulatory T cells. PLoS Biol. 5, e38 (2007).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ferreira, L. M. R., Muller, Y. D., Bluestone, J. A. & Tang, Q. Next-generation regulatory T cell therapy. Nat. Rev. Drug Discov. 18, 749–769 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikami, N., Kawakami, R. & Sakaguchi, S. New Treg cell-based therapies of autoimmune diseases: towards antigen-specific immune suppression. Curr. Opin. Immunol. 67, 36–41 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell https://doi.org/10.1016/j.cell.2018.10.024 (2018).

  • Dong, M. B. et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 178, 1189–1204.e23 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cortez, J. T. et al. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature 582, 416–420 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Loo, C.-S. et al. A genome-wide CRISPR screen reveals a role for the non-canonical nucleosome-remodeling BAF complex in Foxp3 expression and regulatory T cell function. Immunity 53, 143–157.e8 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Schumann, K. et al. Functional CRISPR dissection of gene networks controlling human regulatory T cell identity. Nat. Immunol. 21, 1456–1466 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tone, Y. et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9, 194–202 (2007).

    PubMed 
    MATH 

    Google Scholar
     

  • Sun, X., Cui, Y., Feng, H., Liu, H. & Liu, X. TGF-β signaling controls Foxp3 methylation and Treg cell differentiation by modulating Uhrf1 activity. J. Exp. Med. 216, 2819–2837 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Seki, A. & Rutz, S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J. Exp. Med. 215, 985–997 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sauer, M. et al. DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions. Nat. Commun. 10, 2421 (2019).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Luo, Y. et al. Single-cell transcriptomic analysis reveals disparate effector differentiation pathways in human Treg compartment. Nat. Commun. https://doi.org/10.1038/s41467-021-24213-6 (2021).

  • Chen, K. Y. et al. Joint single-cell measurements of surface proteins, intracellular proteins and gene expression with icCITE-seq. Preprint at bioRxiv https://doi.org/10.1101/2025.01.11.632564 (2025).

  • Freimer, J. W. et al. Systematic discovery and perturbation of regulatory genes in human T cells reveals the architecture of immune networks. Nat. Genet. 54, 1133–1144 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332–341 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Araujo, L., Khim, P., Mkhikian, H., Mortales, C.-L. & Demetriou, M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife 6, e21330 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, L. et al. The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells. Immunity 29, 876–887 (2008).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Oberoi, J. et al. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat. Struct. Mol. Biol. 18, 177–184 (2011).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kao, H. Y. et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 12, 2269–2277 (1998).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fortini, M. E. & Artavanis-Tsakonas, S. The suppressor of hairless protein participates in Notch receptor signaling. Cell 79, 273–282 (1994).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Castel, D. et al. Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev. 27, 1059–1071 (2013).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature https://doi.org/10.1038/377355a0 (1995).

  • Oswald, F. et al. SHARP is a novel component of the Notch/RBP-Jκ signalling pathway. EMBO J. 21, 5417–5426 (2002).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Oswald, F. et al. A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes. Nucleic Acids Res. 44, 4703–4720 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Delacher, M. et al. Rbpj expression in regulatory T cells is critical for restraining T2 responses. Nat. Commun. 10, 1621 (2019).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Feng, Y. et al. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158, 749–763 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, X., Liang, Y., LeBlanc, M., Benner, C. & Zheng, Y. Function of a Foxp3 cis-element in protecting regulatory T cell identity. Cell 158, 734–748 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kawakami, R. et al. Distinct Foxp3 enhancer elements coordinate development, maintenance, and function of regulatory T cells. Immunity 54, 947–961.e8 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dikiy, S. et al. A distal Foxp3 enhancer enables interleukin-2 dependent thymic Treg cell lineage commitment for robust immune tolerance. Immunity 54, 931–946.e11 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37, 785–799 (2012).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mikami, N. et al. Epigenetic conversion of conventional T cells into regulatory T cells by CD28 signal deprivation. Proc. Natl Acad. Sci. USA 117, 12258–12268 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yue, X. et al. Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 213, 377–397 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Schmidt, A., Eriksson, M., Shang, M.-M., Weyd, H. & Tegnér, J. Comparative analysis of protocols to induce human CD4+Foxp3+ regulatory T cells by combinations of IL-2, TGF-β, retinoic acid, rapamycin and butyrate. PLoS ONE 11, e0148474 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sher, F. et al. Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nat. Genet. 51, 1149–1159 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yuan, Z. et al. Structural and functional studies of the RBPJ-SHARP complex reveal a conserved corepressor binding site. Cell Rep. 26, 845–854.e6 (2019).

  • Heinzel, T. et al. A complex containing N-CoR, mSln3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–48 (1997).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, N. et al. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173, 430–442.e17 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • van der Veeken, J. et al. The transcription factor Foxp3 shapes regulatory T cell identity by tuning the activity of trans-acting intermediaries. Immunity 53, 971–984.e5 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, P. et al. Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer. Nature 624, 154–163 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Meyer Zu Horste, G. et al. RBPJ controls development of pathogenic Th17 cells by regulating IL-23 receptor expression. Cell Rep. 16, 392–404 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Joint single-cell DNA accessibility and protein epitope profiling reveals environmental regulation of epigenomic heterogeneity. Nat. Commun. 9, 4590 (2018).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Baskar, R. et al. Integrating transcription-factor abundance with chromatin accessibility in human erythroid lineage commitment. Cell Rep. Methods 2, 100188 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Komatsu, N. et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl Acad. Sci. USA 106, 1903–1908 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chiou, S. H. et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 29, 1576–1585 (2015).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol. 14, 637–645 (2002).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • National Research Council, Division on Earth and Life Studies, Institute for Laboratory Animal Research & Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals 8th edn (National Academies Press, 2011).

  • Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Joung, J. et al. Genome-scale CRISPR–Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).

  • Brinkman, E. K. & van Steensel, B. Rapid quantitative evaluation of CRISPR genome editing by TIDE and TIDER. Methods Mol. Biol. 1961, 29–44 (2019).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Conant, D. et al. Inference of CRISPR edits from Sanger trace data. CRISPR J. 5, 123–130 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Schoonenberg, V. A. C. et al. CRISPRO: identification of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biol. 19, 169 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).

    PubMed 

    Google Scholar
     

  • Akella, N. M., Ciraku, L. & Reginato, M. J. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol. 17, 52 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C. & Ng, D. T. Glycosylation-directed quality control of protein folding. Nat. Rev. Mol. Cell Biol. 16, 742–752 (2015).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments