Thursday, December 18, 2025
No menu items!
HomeNatureGene-specific selective sweeps are pervasive across human gut microbiomes

Gene-specific selective sweeps are pervasive across human gut microbiomes

  • Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poyet, M. et al. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat. Med. 25, 1442–1452 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yaffe, E. & Relman, D. A. Tracking microbial evolution in the human gut using hi-c reveals extensive horizontal gene transfer, persistence and adaptation. Nat. Microbiol. 5, 343–353 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zlitni, S. et al. Strain-resolved microbiome sequencing reveals mobile elements that drive bacterial competition on a clinical timescale. Genome Med. 12, 50 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. & Good, B. H. Dynamics of bacterial recombination in the human gut microbiome. PLoS Biol. 22, e3002472 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Groussin, M. et al. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184, 2053–2067 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McInnes, R. S., McCallum, G. E., Lamberte, L. E. & van Schaik, W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr. Opin. Microbiol. 53, 35–43 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shapiro, B. J. & Polz, M. F. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 22, 235–247 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hudson, R. R., Bailey, K., Skarecky, D., Kwiatowski, J. & Ayala, F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics 136, 1329–1340 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vitti, J. J., Grossman, S. R. & Sabeti, P. C. Detecting natural selection in genomic data. Annu. Rev. Genet. 47, 97–120 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garud, N. R., Messer, P. W., Buzbas, E. O. & Petrov, D. A. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS Genet. 11, e1005004 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrer-Admetlla, A., Liang, M., Korneliussen, T. & Nielsen, R. On detecting incomplete soft or hard selective sweeps using haplotype structure. Mol. Biol. Evol. 31, 1275–1291 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shapiro, B. J. Signatures of natural selection and ecological differentiation in microbial genomes. Adv. Exp. Med. Biol. 781, 339–359 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Good, B. H., Bhatt, A. S. & McDonald, M. J. Unraveling the tempo and mode of horizontal gene transfer in bacteria. Trends Microbiol. 33, 853–865 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pritchard, J. K. & Przeworski, M. Linkage disequilibrium in humans: models and data. Am. J. Hum. Genet. 69, 1–14 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mah, J. C., Lohmueller, K. E. & Garud, N. R. Inference of the demographic histories and selective effects of human gut commensal microbiota over the course of human history. Mol. Biol. Evol. 42, msaf010 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawrie, D. S. & Petrov, D. A. Comparative population genomics: power and principles for the inference of functionality. Trends Genet. 30, 133–139 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cvijović, I., Good, B. H. & Desai, M. M. The effect of strong purifying selection on genetic diversity. Genetics 209, 1235–1278 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartfield, M. & Otto, S. P. Recombination and hitchhiking of deleterious alleles. Evolution 65, 2421–2434 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Haller, B. C. & Messer, P. W. SLiM 4: Multispecies eco-evolutionary modeling. Am. Nat. 201, E127–E139 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded human microbiome project. Nature 550, 61–66 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, H. et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Systems 3, 572–584 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Korpela, K. et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 28, 561–568 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nayfach, S., Rodriguez-Mueller, B., Garud, N. & Pollard, K. S. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 26, 1612–1625 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, E. et al. Subtyping analysis reveals new variants and accelerated evolution of Clostridioides difficile toxin b. Commun. Biol. 3, 347 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mansfield, M. J. et al. Phylogenomics of 8,839 Clostridioides difficile genomes reveals recombination-driven evolution and diversification of toxin A and B. PLoS Pathog. 16, e1009181 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dingle, K. E. et al. Recombinational switching of the Clostridium difficile S-layer and a novel glycosylation gene cluster revealed by large-scale whole-genome sequencing. J. Infect. Dis. 207, 675–686 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinberg, H. D. & Snitkin, E. S. Homologous recombination in Clostridioides difficile mediates diversification of cell surface features and transport systems. mSphere 5, 10–1128 (2020).

    Article 

    Google Scholar
     

  • Chen, D. W. & Garud, N. R. Rapid evolution and strain turnover in the infant gut microbiome. Genome Res. 32, 1124–1136 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barrett, A. J. Enzyme nomenclature. Recommendations 1992: Supplement 2: Corrections and additions (1994). Eur. J. Biochem. 232, 1 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grand, M., Riboulet-Bisson, E., Deutscher, J., Hartke, A. & Sauvageot, N. Enterococcus faecalis maltodextrin gene regulation by combined action of maltose gene regulator MalR and pleiotropic regulator CcpA. Appl. Environ. Microbiol. 86, e01147–20 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold, A. R. & Chassaing, B. Maltodextrin, modern stressor of the intestinal environment. Cell. Mol. Gastroenterol. Hepatol. 7, 475–476 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shetty, S. A. et al. Inter-species metabolic interactions in an in-vitro minimal human gut microbiome of core bacteria. NPJ Biofilms Microbiomes 8, 21 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonnenburg, J. L. & Sonnenburg, E. D. Vulnerability of the industrialized microbiota. Science 366, eaaw9255 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obregon-Tito, A. J. et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat. Commun. 6, 6505 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pehrsson, E. C. et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533, 212–216 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. et al. Unique features of ethnic Mongolian gut microbiome revealed by metagenomic analysis. Sci. Rep. 6, 34826 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosen, M. J., Davison, M., Bhaya, D. & Fisher, D. S. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science 348, 1019–1023 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakoparnig, T., Field, C. & van Nimwegen, E. Whole genome phylogenies reflect the distributions of recombination rates for many bacterial species. eLife 10, e65366 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hehemann, J.-H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tourrette, E. et al. An ancient ecospecies of Helicobacter pylori. Nature 635, 178–185 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stolyarova, A. V. et al. Complex fitness landscape shapes variation in a hyperpolymorphic species. eLife 11, e76073 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold, B. et al. Fine-scale haplotype structure reveals strong signatures of positive selection in a recombining bacterial pathogen. Mol. Biol. Evol. 37, 417–428 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crits-Christoph, A., Olm, M. R., Diamond, S., Bouma-Gregson, K. & Banfield, J. F. Soil bacterial populations are shaped by recombination and gene-specific selection across a grassland meadow. ISME J. 14, 1834–1846 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B., Neher, R. A., Bachtrog, D., Andolfatto, P. & Shraiman, B. I. Correlated evolution of nearby residues in drosophilid proteins. PLoS Genet. 7, e1001315 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocha, E. P. & Feil, E. J. Mutational patterns cannot explain genome composition: Are there any neutral sites in the genomes of bacteria?. PLoS Genet. 6, e1001104 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schloissnig, S. et al. Genomic variation landscape of the human gut microbiome. Nature 493, 45–50 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Assaf, Z. J., Petrov, D. A. & Blundell, J. R. Obstruction of adaptation in diploids by recessive, strongly deleterious alleles. Proc. Natl Acad. Sci. USA 112, E2658–E2666 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arevalo, P., VanInsberghe, D., Elsherbini, J., Gore, J. & Polz, M. F. A reverse ecology approach based on a biological definition of microbial populations. Cell 178, 820–834 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, B., Zheng, D., Zhou, S., Chen, L. & Yang, J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 50, D912–D917 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lack, J. B. et al. The Drosophila Genome Nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population. Genetics 199, 1229–1241 (2015).

  • Wolff, R. & Garud, N. Gene-specific selective sweeps are pervasive across human gut microbiomes. Dryad https://datadryad.org/dataset/doi:10.5061/dryad.9ghx3ffx4 (2025).

  • Wolff, R. & Garud, N. Gene-specific selective sweeps are pervasive across human gut microbiomes. Zenodo https://doi.org/10.5281/zenodo.17253586 (2025).

  • Gangwer, K. A. et al. Molecular evolution of the Helicobacter pylori vacuolating toxin gene vacA. J. Bacteriol. 192, 6126–6135 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments