McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740â1745 (2006).
McPhaden, M. J., Santoso, A. & Cai, W. in El Niño Southern Oscillation in a Changing Climate, Geophysical Monographs 1â19 (eds McPhaden, M. J. et al.) (Wiley, 2020).
Cobb, K. M. et al. Highly variable El NinoâSouthern Oscillation throughout the Holocene. Science 339, 67â70 (2013).
Liu, Z. et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature 515, 550â553 (2014).
Lu, Z., Liu, Z., Zhu, J. & Cobb, K. M. A review of Paleo El Niño-Southern Oscillation. Atmosphere 9, 130 (2018).
McPhaden, M. J. Genesis and evolution of the 1997-98 El Niño. Science 283, 950â954 (1999).
Santoso, A., Mcphaden, M. J. & Cai, W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys. 55, 1079â1129 (2017).
Glynn, P. W. El Niño-Southern Oscillation 1982-1983: nearshore population, community, and ecosystem responses. Annu. Rev. Ecol. Evol. Syst. 19, 309â346 (1988).
Thirumalai, K., DiNezio, P. N., Okumura, Y. & Deser, C. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun. 8, 15531 (2017).
Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 5, 111â116 (2014).
Emile-Geay, J. & Tingley, M. Inferring climate variability from nonlinear proxies: application to palaeo-ENSO studies. Clim. Past 12, 31â50 (2016).
Ford, H. L., Ravelo, A. C. & Polissar, P. J. Reduced El NiñoâSouthern Oscillation during the Last Glacial Maximum. Science 347, 255â258 (2015).
Sadekov, A. Y. et al. Palaeoclimate reconstructions reveal a strong link between El Niño-Southern Oscillation and Tropical Pacific mean state. Nat. Commun. 4, 2692 (2013).
Leduc, G., Vidal, L., Cartapanis, O. & Bard, E. Modes of eastern equatorial Pacific thermocline variability: implications for ENSO dynamics over the last glacial period. Paleoceanography 24, PA3202 (2009).
Rustic, G. T., Polissar, P. J., Ravelo, A. C. & White, S. M. Modulation of late Pleistocene ENSO strength by the tropical Pacific thermocline. Nat. Commun. 11, 5377 (2020).
DiNezio, P. N., Deser, C., Okumura, Y. & Karspeck, A. Predictability of 2-year La Niña events in a coupled general circulation model. Clim. Dyn. 49, 4237â4261 (2017).
Zhu, J. et al. Reduced ENSO variability at the LGM revealed by an isotope-enabled Earth system model. Geophys. Res. Lett. 44, 6984â6992 (2017).
Koutavas, A. & Joanides, S. El Niño-Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography 27, PA4208 (2012).
Thirumalai, K., Partin, J. W., Jackson, C. S. & Quinn, T. M. Statistical constraints on El Niño Southern Oscillation reconstructions using individual foraminifera: a sensitivity analysis. Paleoceanography 28, 401â412 (2013).
Emile-Geay, J. et al. Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nat. Geosci. 9, 168â173 (2015).
Carré, M. et al. High-resolution marine data and transient simulations support orbital forcing of ENSO amplitude since the mid-Holocene. Quat. Sci. Rev. 268, 107125 (2021).
Lawman, A. E. et al. Unraveling forced responses of extreme El Niño variability over the Holocene. Sci. Adv. 8, eabm4313 (2022).
Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325, 310â314 (2009).
Glaubke, R. H. et al. An inconsistent ENSO response to Northern Hemisphere stadials over the last deglaciation. Geophys. Res. Lett. 51, e2023GL107634 (2024).
Lakhani, K. Q., Lynch-Stieglitz, J. & Monteagudo, M. M. Constraining calcification habitat using oxygen isotope measurements in tropical planktonic foraminiferal tests from surface sediments. Mar. Micropaleontol. 170, 102074 (2022).
Lynch-Stieglitz, J. et al. Glacial-interglacial changes in central tropical Pacific surface seawater property gradients. Paleoceanography 30, 423â438 (2015).
Jin, F. F. Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño-Southern Oscillation. Science 274, 76â78 (1996).
Puy, M., Vialard, J., Lengaigne, M. & Guilyardi, E. Modulation of equatorial Pacific westerly/easterly wind events by the MaddenâJulian oscillation and convectively-coupled Rossby waves. Clim. Dyn. 46, 2155â2178 (2015).
Xue, Y. & Kumar, A. Evolution of the 2015/16 El Niño and historical perspective since 1979. Sci. Chn. Earth Sci. 60, 1572â1588 (2017).
Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316â4340 (2007).
DiNezio, P. N., Gramer, L. J., Johns, W. E., Meinen, C. S. & Baringer, M. O. Observed interannual variability of the Florida current: wind forcing and the North Atlantic Oscillation. J. Phys. Oceanogr. 39, 721â736 (2009).
An, S.-I. & Jin, F.-F. Nonlinearity and asymmetry of ENSO. J. Clim. 17, 2399â2412 (2004).
Callahan, C. W. et al. Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nat. Clim. Change 11, 752â757 (2021).
DiNezio, P. N. et al. Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Clim. 25, 7399â7420 (2012).
Heede, U.K. & Fedorov, A. V. Towards understanding the robust strengthening of ENSO and more frequent extreme El Niño events in CMIP6 global warming simulations. Clim. Dyn. 61, 3047â3060 (2023).
Brown, J. R. et al. Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Clim. Past 16, 1777â1805 (2020).
Cai, W. et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Change 11, 27â32 (2021).
DiNezio, P. N. et al. The response of the Walker circulation to Last Glacial Maximum forcing: implications for detection in proxies. Paleoceanography 26, PA3217 (2011).
Ford, H. L., McChesney, C. L., Hertzberg, J. E. & McManus, J. F. A deep eastern equatorial Pacific thermocline during the Last Glacial Maximum. Geophys. Res. Lett. 45, 11,806â11,816 (2018).
Andreasen, D. J. & Ravelo, A. C. Tropical Pacific Ocean thermocline depth reconstructions for the Last Glacial Maximum. Paleoceanography 12, 395â413 (1997).
Hollstein, M. et al. Variations in Western Pacific Warm Pool surface and thermocline conditions over the past 110,000 years: forcing mechanisms and implications for the glacial Walker circulation. Quat. Sci. Rev. 201, 429â445 (2018).
Monteagudo, M. M., LynchâStieglitz, J., Marchitto, T. M. & Schmidt, M. W. Central equatorial Pacific cooling during the last glacial maximum. Geophys. Res. Lett. 48, e2020GL088592 (2021).
Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569â573 (2020).
Cooper, V. T. et al. Last Glacial Maximum pattern effects reduce climate sensitivity estimates. Sci. Adv. 10, eadk9461 (2024).
Timmermann, A. et al. El NiñoâSouthern Oscillation complexity. Nature 559, 535â545 (2018).
McPhaden, M. J. & Yu, X. Equatorial waves and the 1997â98 El Niño. Geophys. Res. Lett. 26, 2961â2964 (1999).
Kessler, W. S. Is ENSO a cycle or a series of events? Geophys. Res. Lett. 29, 40-1â40-4 (2002).
DiNezio, P. N. & Deser, C. Nonlinear controls on the persistence of La Niña. J. Clim. 27, 7335â7355 (2014).
Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).
LâHeureux, M. L., Lee, S. & Lyon, B. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Clim. Change 3, 571â576 (2013).
Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T. & OttoâBliesner, B. L. Pliocene Warmth Consistent With Greenhouse Gas Forcing. Geophys. Res. Lett. 46, 9136â9144 (2019).
Glaubke, R. H., Thirumalai, K., Schmidt, M. W. & Hertzberg, J. E. Discerning Changes in High-Frequency Climate Variability Using Geochemical Populations of Individual Foraminifera. Paleoceanogr. Paleoclimatol. 36, e2020PA004065 (2021).
DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, eaat9658 (2018).
Argus, D. F., Peltier, W. R., Drummond, R. & Moore, A. W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int. 198, 537â563 (2014).
Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICEâ6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450â487 (2015).
Brady, E. C., Otto-Bliesner, B. L., Kay, J. E. & Rosenbloom, N. Sensitivity to glacial forcing in the CCSM4. J. Clim. 26, 1901â1925 (2013).
DiNezio, P. N. et al. The climate response of the Indo-Pacific warm pool to glacial sea level. Paleoceanography 31, 866â894 (2016).
Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295â305 (2002).
Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000â800,000 years before present. Nature 453, 379â382 (2008).
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysisâanalysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15, 779â808 (2019).
Huang, B. et al. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179â8205 (2017).
Costa, K. M. et al. No iron fertilization in the equatorial Pacific Ocean during the last ice age. Nature 529, 519â522 (2016).
Thirumalai, K., Cohen, A. S. & Taylor, D. Hydrologic controls on individual ostracode stable isotopes in a desert lake: a modern baseline for Lake Turkana. Geochem. Geophys. Geosyst. 24, e2022GC010790 (2023).
Montávez, N. B., Thirumalai, K. & Marino, G. Shell reworking impacts on climate variability reconstructions using individual foraminiferal analyses. Paleoceanogr. Paleoclimatol. 39, e2023PA004663 (2024).
Thirumalai, K. & Maupin, C. R. Chasing interannual marine paleovariability. Paleoceanogr. Paleoclimatol. 38, e2023PA004723 (2023).
White, S. M., Ravelo, A. C. & Polissar, P. J. Dampened El Niño in the early and mid-Holocene due to insolation-forced warming/deepening of the thermocline. Geophys. Res. Lett. 45, 316â326 (2018).
Hollstein, M. et al. Stable oxygen isotopes and Mg/Ca in planktic foraminifera from modern surface sediments of the Western Pacific Warm Pool: implications for thermocline reconstructions. Paleoceanography 32, 1174â1194 (2017).
Ray, S., Wittenberg, A. T., Griffies, S. M. & Zeng, F. Understanding the equatorial Pacific cold tongue time-mean heat budget. Part I: diagnostic framework. J. Clim. 31, 9965â9985 (2018).
Deser, C. et al. ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Clim. 25, 2622â2651 (2012).
Zhang, S. et al. Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years. Nat. Commun. 13, 5457 (2022).
Timmermann, A., Sachs, J. & Timm, O. E. Assessing divergent SST behavior during the last 21 ka derived from alkenones and G. ruberâMg/Ca in the equatorial Pacific. Paleoceanography 29, 680â696 (2014).
MARGO Project Members. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci. 2, 127â132 (2009).
Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281â301 (2018).
Tierney, J. E., Malevich, S. B., Gray, W., Vetter, L. & Thirumalai, K. Bayesian calibration of the Mg/Ca paleothermometer in planktic foraminifera. Paleoceanogr. Paleoclimatol. 34, 2005â2030 (2019).
Sagawa, T., Yokoyama, Y., Ikehara, M. & Kuwae, M. Shoaling of the western equatorial Pacific thermocline during the last glacial maximum inferred from multispecies temperature reconstruction of planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 346â347, 120â129 (2012).
Leech, P. J., Lynch-Stieglitz, J. & Zhang, R. Western Pacific thermocline structure and the Pacific marine Intertropical Convergence Zone during the Last Glacial Maximum. Earth Planet. Sci. Lett. 363, 133â143 (2013).
Thirumalai, K. Holocene and glacial individual foraminiferal analyses (IFA) of stable isotopes in Globigerinoides ruber tests from Line Islands sediment cores (central equatorial Pacific) (v.1). Zenodo https://doi.org/10.5281/zenodo.12744812 (2024).
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90â95 (2007).
McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference 56â61 (SciPy, 2010).
Oliphant, T. E. Guide to NumPy (CreateSpace, 2006).
Michael, W. A. et al. Seaborn v.0.9.0. Seaborn https://seaborn.pydata.org/whatsnew/v0.9.0.html (2018).
Hoyer, S. & Hamman, J. xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. 5, 10 (2017).
Office, M. Cartopy: a cartographic python library with a Matplotlib interface. Cartopy http://scitools.org.uk/cartopy (2010â2017).
Jones, E., Oliphnat, T. & Peterson, P. SciPy: open source scientific tools for Python. SciPy http://www.scipy.org (2001).
DiNezio, P. CESM1.2 simulations of Tropical Pacific heat budget and other properties across Pleistocene and Holocene climatic boundary intervals. Zenodo https://doi.org/10.5281/zenodo.12832365 (2024).
Thirumalai, K. & DiNezio, P. (2024). Codes and data files for analysis presented in Thirumalai & DiNezio et al. (2024, Nature). Zenodo https://doi.org/10.5281/zenodo.12849829 (2024).