Thursday, February 6, 2025
No menu items!
HomeNatureFungal impacts on Earth’s ecosystems

Fungal impacts on Earth’s ecosystems

  • Hawksworth, D. L. & Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5, FUNK-0052-2016 (2017).

    Article 

    Google Scholar
     

  • Baldrian, P., Kohout, P. & Větrovský, T. in Evolution of Fungi and Fungal-Like Organisms (eds. Pöggeler, S. & James, T.) 227–238 (Springer, 2023).

  • Niskanen, T. et al. Pushing the frontiers of biodiversity research: unveiling the global diversity, distribution, and conservation of fungi. Annu. Rev. Environ. Resour. 48, 149–176 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Bergman, A. & Casadevall, A. Mammalian endothermy optimally restricts fungi and metabolic costs. mBio 1, e00212-10 (2010).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 24, e428–e438 (2024).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Lilleskov, E. A., Kuyper, T. W., Bidartondo, M. I. & Hobbie, E. A. in Atmospheric Nitrogen Deposition to Global Forests (eds. Du, E. & de Vries, W.) 95–118 (Academic, 2024).

  • Raza, M. M. & Bebber, D. P. Climate change and plant pathogens. Curr. Opin. Microbiol. 70, 102233 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Head, J. R. et al. Effects of precipitation, heat, and drought on incidence and expansion of coccidioidomycosis in western USA: a longitudinal surveillance study. Lancet Planet. Health 6, e793–e803 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Steidinger, B. S. et al. Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. J. Biogeogr. 47, 772–782 (2020).

    Article 

    Google Scholar
     

  • Qin, C., Pellitier, P. T., Van Nuland, M. E., Peay, K. G. & Zhu, K. Niche modelling predicts that soil fungi occupy a precarious climate in boreal forests. Glob. Ecol. Biogeogr. 32, 1127–1139 (2023).

    Article 

    Google Scholar
     

  • Van Nuland, M. E. et al. Above- and belowground fungal biodiversity of Populus trees on a continental scale. Nat. Microbiol. 8, 2406–2419 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Robert, V. A. & Casadevall, A. Vertebrate endothermy restricts most fungi as potential pathogens. J. Infect. Dis. 200, 1623–1626 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Seidel, D. et al. Impact of climate change and natural disasters on fungal infections. Lancet Microbe 5, e594–e605 (2024).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Garcia-Solache, M. A. & Casadevall, A. Global warming will bring new fungal diseases for mammals. mBio 1, e00061-10 (2010).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Salthammer, T. et al. A holistic modeling framework for estimating the influence of climate change on indoor air quality. Indoor Air 32, e13039 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Awaab Ishak and the politics of mould in the UK. eClinicalMedicine 54, 101801 (2022).

  • Li, Y. et al. Impact of Hurricane Harvey on inpatient asthma hospitalization visits within southeast Texas, 2016–2019. J. Occup. Environ. Med. 65, 924–930 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Toda, M. et al. Invasive mold infections following Hurricane Harvey—Houston, Texas. Open Forum Infect. Dis. 10, ofad093 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulchandani, R. et al. The English National Cohort Study of Flooding & Health: psychological morbidity at three years of follow up. BMC Public Health 20, 321 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doehlemann, G., Ökmen, B., Zhu, W. & Sharon, A. Plant pathogenic fungi. Microbiol. Spectr. 5, FUNK-0023-2016 (2017).

    Article 

    Google Scholar
     

  • Stukenbrock, E. & Gurr, S. Address the growing urgency of fungal disease in crops. Nature 617, 31–34 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360, 739–742 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robey, M. T., Caesar, L. K., Drott, M. T., Keller, N. P. & Kelleher, N. L. An interpreted atlas of biosynthetic gene clusters from 1,000 fungal genomes. Proc. Natl Acad. Sci. USA 118, e2020230118 (2021). Comprehensive characterization of the biosynthetic potential of fungi to produce natural products.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ekanayaka, A. H. et al. A review of the fungi that degrade plastic. J. Fungi 8, 772 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Schmidt, B. et al. Mechanical, physical and thermal properties of composite materials produced with the basidiomycete Fomes fomentarius. Fungal Biol. Biotechnol. 10, 22 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cordero, R. J. B. & Casadevall, A. Functions of fungal melanin beyond virulence. Fungal Biol. Rev. 31, 99–112 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dadachova, E. et al. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS ONE 2, e457 (2007).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Berbee, M. L., James, T. Y. & Strullu-Derrien, C. Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu. Rev. Microbiol. 71, 41–60 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amend, A. et al. Fungi in the marine environment: open questions and unsolved problems. mBio 10, e01189-18 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Geiser, D. M., Taylor, J. W., Ritchie, K. B. & Smith, G. W. Cause of sea fan death in the West Indies. Nature 394, 137–138 (1998).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Rosenberg, J. F. et al. Cryptococcus gattii type VGIIa infection in harbor seals (Phoca vitulina) in British Columbia, Canada. J. Wildl. Dis. 52, 677–681 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Harris, H. S. et al. Novel presentation of coccidioidomycosis with myriad free-floating proteinaceous spheres in the pericardial sac of a southern sea otter (Enhydra lutris nereis). J. Wildl. Dis. 60, 223–228 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Vilela, R. & Mendoza, L. in Emerging and Epizootic Fungal Infections in Animals (eds. Seyedmousavi, S. et al.) 177–196 (Springer, 2018).

  • Schmidt, S., Kildgaard, S., Guo, H., Beemelmanns, C. & Poulsen, M. The chemical ecology of the fungus-farming termite symbiosis. Nat. Prod. Rep. 39, 231–248 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Currie, C. R., Poulsen, M., Mendenhall, J., Boomsma, J. J. & Billen, J. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311, 81–83 (2006). The authors discover modifications in fungus-growing ants for maintaining bacterial symbionts that produce antimicrobials to suppress fungal pathogens, illustrating the complexity of fungus–insect interactions.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyce, G. R. et al. Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying cicada pathogens. Fungal Ecol. 41, 147–164 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58, 501–517 (2008).

    Article 
    MATH 

    Google Scholar
     

  • Kandasamy, D. et al. Conifer-killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. PLoS Biol. 21, e3001887 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019). Analysis showing the extent to which the amphibian chytridiomycosis panzootic has caused the greatest recorded loss of biodiversity attributable to a disease.

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hoyt, J. R., Kilpatrick, A. M. & Langwig, K. E. Ecology and impacts of white-nose syndrome on bats. Nat. Rev. Microbiol. 19, 196–210 (2021). Summarizes the origin and introduction of Pseudogymnoascus destructans, the fungal pathogen that causes bat white-nose syndrome, to North America and describes the impacts and epidemiology of this devastating wildlife disease.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coker, T. L. R. et al. Estimating mortality rates of European ash (Fraxinus excelsior) under the ash dieback (Hymenoscyphus fraxineus) epidemic. Plants People Planet 1, 48–58 (2019).

    Article 
    MATH 

    Google Scholar
     

  • O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018). Genomic analysis identifying the centre of origin and dating the worldwide expansion of the amphibian chytridiomycosis panzootic.

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc. Natl Acad. Sci. USA 110, 15325–15329 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • McMullan, M. et al. The ash dieback invasion of Europe was founded by two genetically divergent individuals. Nat. Ecol. Evol. 2, 1000–1008 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Springborn, M. R., Weill, J. A., Lips, K. R., Ibáñez, R. & Ghosh, A. Amphibian collapses increased malaria incidence in Central America. Environ. Res. Lett. 17, 104012 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332, 41–42 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hill, L. et al. The £15 billion cost of ash dieback in Britain. Curr. Biol. 29, R315–R316 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Taylor, J. W. & Barker, B. M. The endozoan, small-mammal reservoir hypothesis and the life cycle of Coccidioides species. Med. Mycol. 57, S16–S20 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gorris, M. E., Neumann, J. E., Kinney, P. L., Sheahan, M. & Sarofim, M. C. Economic valuation of coccidioidomycosis (valley fever) projections in the United States in response to climate change. Weather Clim. Soc. 13, 107–123 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorris, M. E., Treseder, K. K., Zender, C. S. & Randerson, J. T. Expansion of coccidioidomycosis endemic regions in the United States in response to climate change. GeoHealth 3, 308–327 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rocke, T. E. et al. Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus). Sci. Rep. 9, 6788 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Isidoro-Ayza, M. & Klein, B. S. Pathogenic strategies of Pseudogymnoascus destructans during torpor and arousal of hibernating bats. Science 385, 194–200 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waddle, A. W. et al. Hotspot shelters stimulate frog resistance to chytridiomycosis. Nature 631, 344–349 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heiniger, U. & Rigling, D. Biological control of chestnut blight in Europe. Annu. Rev. Phytopathol. 32, 581–599 (1994).

    Article 
    MATH 

    Google Scholar
     

  • Zhang, H. et al. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for Brassica protection and yield enhancement. Mol. Plant 13, 1420–1433 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Thapa, V., Keller, N. P. & Roossinck, M. J. Evaluation of virus-free and wild-type isolates of Pseudogymnoascus destructans using a porcine ear model. mSphere 7, P1420–P1433 (2022).

    Article 

    Google Scholar
     

  • Clemons, R. A. et al. An endogenous DNA virus in an amphibian-killing fungus associated with pathogen genotype and virulence. Curr. Biol. 34, 1469–1478 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Feijen, F. A. A., Vos, R. A., Nuytinck, J. & Merckx, V. S. F. T. Evolutionary dynamics of mycorrhizal symbiosis in land plant diversification. Sci. Rep. 8, 10698 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Allsup, C. M., George, I. & Lankau, R. A. Shifting microbial communities can enhance tree tolerance to changing climates. Science 380, 835–840 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hawkes, C. V., Allen, X., Balint-Kurti, P. & Cowger, C. Manipulating the plant mycobiome to enhance resilience: Ecological and evolutionary opportunities and challenges. PLoS Pathog. 19, e1011816 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chitnis, V. R. et al. Fungal endophyte-mediated crop improvement: the way ahead. Front. Plant Sci. 11, 561007 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales-Vargas, A. T., López-Ramírez, V., Álvarez-Mejía, C. & Vázquez-Martínez, J. Endophytic fungi for crops adaptation to abiotic stresses. Microorganisms 12, 1357 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gowtham, H. G. et al. Fungal endophytes as mitigators against biotic and abiotic stresses in crop plants. J. Fungi 10, 116 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Hawkins, H. J. et al. Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 33, R560–R573 (2023). The first global quantification of carbon allocation from plants to mycorrhizal fungi estimates that 13.12 Gt of CO2 emissions fixed by terrestrial plants is, at least temporarily, allocated to the underground mycelium of mycorrhizal fungi per year, equating to around 36% of current annual CO2 emissions from fossil fuels.

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Lilleskov, E. A., Kuyper, T. W., Bidartondo, M. I. & Hobbie, E. A. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review. Environ. Pollut. 246, 148–162 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Stukenbrock, E. H. et al. The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Res. 21, 2157–2166 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sotiropoulos, A. G. et al. Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade. Nat. Commun. 13, 4315 (2022). This study traced the historical spread of wheat powdery mildew, revealing the role of human migration as well as rapid evolution through hybridization.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sharma, R. R., Singh, D. & Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol. Control 50, 205–221 (2009).

    Article 
    MATH 

    Google Scholar
     

  • Singh, R. P. et al. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105, 872–884 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Grandaubert, J., Dutheil, J. Y. & Stukenbrock, E. H. The genomic determinants of adaptive evolution in a fungal pathogen. Evol. Lett. 3, 299–312 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Islam, M. T. et al. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 14, 84 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Eskola, M. et al. Worldwide contamination of food-crops with mycotoxins: validity of the widely cited ‘FAO estimate’ of 25. Crit. Rev. Food Sci. Nutr. 60, 2773–2789 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liew, W. P. P. & Mohd-Redzwan, S. Mycotoxin: its impact on gut health and microbiota. Front. Cell. Infect. Microbiol. 8, 60 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johns, L. E., Bebber, D. P., Gurr, S. J. & Brown, N. A. Emerging health threat and cost of Fusarium mycotoxins in European wheat. Nat. Food 3, 1014–1019 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sun, Y., Song, Y., Long, M. & Yang, S. Immunotoxicity of three environmental mycotoxins and their risks of increasing pathogen infections. Toxins 15, 187 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, Y., Pruitt, R. N., Nürnberger, T. & Wang, Y. Evasion of plant immunity by microbial pathogens. Nat. Rev. Microbiol. 20, 449–464 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Weiberg, A. et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342, 118–123 (2013). This study discovered the mechanism of cross-kingdom RNA interference (RNAi), in which small RNAs from a fungal pathogen are transported into plant hosts and use the plant RNAi machinery to silence plant immunity genes.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B., Sen, Li,Y. C., Guo, H. S. & Zhao, J. H. Verticillium dahliae secretes small RNA to target host MIR157d and retard plant floral transition during infection. Front. Plant Sci. 13, 847086 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, Q. et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360, 1126–1129 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Oliver, R. P. & Hewitt, H. G. Fungicides in Crop Protection (CABI, 2014).

  • Steinberg, G. et al. A lipophilic cation protects crops against fungal pathogens by multiple modes of action. Nat. Commun. 11, 1608 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Van Den Bosch, F., Paveley, N., Van Den Berg, F., Hobbelen, P. & Oliver, R. Mixtures as a fungicide resistance management tactic. Phytopathology 104, 1264–1273 (2014).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ludwig, N. et al. A cell surface-exposed protein complex with an essential virulence function in Ustilago maydis. Nat. Microbiol. 6, 722–730 (2021). This study describes a complex of seven Ustilago maydis proteins likely to be involved in effector delivery to the host.

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Niu, D. et al. RNAs—a new frontier in crop protection. Curr. Opin. Biotechnol. 70, 204–212 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cai, Q. et al. Message in a bubble: shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles. Annu. Rev. Plant Biol. 72, 497–524 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Qiao, L. et al. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop protection. Plant Biotechnol. J. 21, 854–865 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Luo, M. et al. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat. Biotechnol. 39, 561–566 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kourelis, J., Marchal, C., Posbeyikian, A., Harant, A. & Kamoun, S. NLR immune receptor-nanobody fusions confer plant disease resistance. Science 379, 934–939 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, G. D. et al. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action (WHO, 2022).

  • Lionakis, M. S., Drummond, R. A. & Hohl, T. M. Immune responses to human fungal pathogens and therapeutic prospects. Nat. Rev. Immunol. 23, 433–452 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hoenigl, M. et al. COVID-19-associated fungal infections. Nat. Microbiol. 7, 1127–1140 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Leonardi, I. et al. Mucosal fungi promote gut barrier function and social behavior via type 17 immunity. Cell 185, 831–846 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672–678 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Martini, G. R. et al. Selection of cross-reactive T cells by commensal and food-derived yeasts drives cytotoxic TH1 cell responses in Crohn’s disease. Nat. Med. 29, 2602–2614 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bacher, P. et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355 (2019). This study showed that intestinal Candida albicans is the most common inducer of TH17 responses in the gut of humans, and that these cells are cross-reactive to Aspergillus in the airway causing inflammation. This is suggestive of a gut-to-lung axis in which TH17 immune protective responses in the gut can exacerbate pathological inflammation in the lung.

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Shao, T. Y. et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe 25, 404–417 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradford, L. L. & Ravel, J. The vaginal mycobiome: a contemporary perspective on fungi in women’s health and diseases. Virulence 8, 342–351 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Wu, G. et al. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet. 11, e1005614 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Findley, K. et al. Topographic diversity of fungal and bacterial communities in human skin. Nature 498, 367–370 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sparber, F. et al. The skin commensal yeast Malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation. Cell Host Microbe 25, 389–403 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hernández-Santos, N. et al. Lung epithelial cells coordinate innate lymphocytes and immunity against pulmonary fungal infection. Cell Host Microbe 23, 511–522 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conti, H. R. et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe 20, 606–617 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doron, I. et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat. Microbiol. 6, 1493–1504 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Doron, I. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 184, 1017–1031 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liang, S. H. et al. The hyphal-specific toxin candidalysin promotes fungal gut commensalism. Nature 627, 620–627 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rhodes, J. et al. Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nat. Microbiol. 7, 663–674 (2022). Genomic analysis revealing the infection of patients with antifungal resistant isolates acquired from environment exposures.

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jacobs, S. E., Zagaliotis, P. & Walsh, T. J. Novel antifungal agents in clinical trials. F1000Research 10, 507 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Maji, A. et al. Tuning sterol extraction kinetics yields a renal-sparing polyene antifungal. Nature 623, 1079–1085 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • van Rhijn, N. et al. Aspergillus fumigatus strains that evolve resistance to the agrochemical fungicide ipflufenoquin in vitro are also resistant to olorofim. Nat. Microbiol. 9, 29–34 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Break, T. J. et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 371, eaay5731 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira, L. V. N., Wang, R., Specht, C. A. & Levitz, S. M. Vaccines for human fungal diseases: close but still a long way to go. NPJ Vaccines 6, 33 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rayens, E. et al. Immunogenicity and protective efficacy of a pan-fungal vaccine in preclinical models of aspergillosis, candidiasis, and pneumocystosis. PNAS Nexus 1, pgac248 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lockhart, S. R., Chowdhary, A. & Gold, J. A. W. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat. Rev. Microbiol. 21, 818–832 (2023). This study describes the global population structure of Candida auris and defines the four major clades that arose contemporaneously, revealing the low diversity of isolates within each clade and high diversity between clades. This led to many hypotheses about what could have led to the rapid emergence of this pathogen with its complex population structure.

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Duong, T. M. N. et al. Azole-resistant Aspergillus fumigatus is highly prevalent in the environment of Vietnam, with marked variability by land use type. Environ. Microbiol. 23, 7632–7642 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chow, N. A. et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio 11, e03364-19 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Arora, P. et al. Environmental isolation of Candida auris from the coastal wetlands of Andaman Islands, India. mBio 12, e03181-20 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yadav, A. et al. Candida auris on apples: diversity and clinical significance. mBio 13, e0051822 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Rybak, J. M. et al. Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris. mBio 11, e00365-20 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lockhart, S. R. et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 64, 134–140 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Casadevall, A., Kontoyiannis, D. P. & Robert, V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio 10, e01397-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, B. R. et al. On the origins of a species: what might explain the rise of Candida auris? J. Fungi 5, 58 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Uhrlaß, S. et al. Trichophyton indotineae—an emerging pathogen causing recalcitrant dermatophytoses in India and worldwide—a multidimensional perspective. J. Fungi 8, 757 (2022). Summary of the characteristics of a rapidly emerging epidemic fungus in India, Trichophyton indotineae, that causes a skin-to-skin transmission affecting the groin, body and face. T. indotineae is resistant to terbinafine, which is normally the antifungal of choice for dermatophyte fungi.

    Article 

    Google Scholar
     

  • Etchecopaz, A. et al. Sporothrix brasiliensis: a review of an emerging South American fungal pathogen, its related disease, presentation and spread in Argentina. J. Fungi 7, 170 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Barnacle, J. R. et al. The first three reported cases of Sporothrix brasiliensis cat-transmitted sporotrichosis outside South America. Med. Mycol. Case Rep. 39, 14–17 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadav, A. et al. Candida auris in dog ears. J. Fungi 9, 720 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • White, T. C. et al. Candida auris detected in the oral cavity of a dog in Kansas. mBio 15, e0308023 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, J. et al. Pan-drug resistance and hypervirulence in a human fungal pathogen are enabled by mutagenesis induced by mammalian body temperature. Nat. Microbiol. 9, 1686–1699 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Graham, A. E. & Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 14, 2231 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jahn, L. J., Rekdal, V. M. & Sommer, M. O. A. Microbial foods for improving human and planetary health. Cell 186, 469–478 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Behera, B. C. Citric acid from Aspergillus niger: a comprehensive overview. Crit. Rev. Microbiol. 46, 727–749 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fraser, R. Z., Shitut, M., Agrawal, P., Mendes, O. & Klapholz, S. Safety evaluation of soy leghemoglobin protein preparation derived from Pichia pastoris, intended for use as a flavor catalyst in plant-based meat. Int. J. Toxicol. 37, 241–262 (2018). This study revealed no evidence for toxicity for the haem cofactor from plant leghaemoglobin that confers meat-like flavours upon cooking.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Molecular mechanisms of nematode–nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 53, 67–95 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yang, X. et al. Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment. mBio 9, e01211-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchez, S. & Demain, A. L. in Food Bioactives (ed. Puri, M.) 59–87 (Springer, 2017).

  • Nutt, D., Spriggs, M. & Erritzoe, D. Psychedelics therapeutics: what we know, what we think, and what we need to research. Neuropharmacology 223, 109257 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lark, T. J. et al. Environmental outcomes of the US Renewable Fuel Standard. Proc. Natl Acad. Sci. USA 119, e2101084119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Huq, N. A. et al. Toward net-zero sustainable aviation fuel with wet waste-derived volatile fatty acids. Proc. Natl Acad. Sci. USA 118, e2023008118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harms, H., Schlosser, D. & Wick, L. Y. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 9, 177–192 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vandelook, S., Elsacker, E., Van Wylick, A., De Laet, L. & Peeters, E. Current state and future prospects of pure mycelium materials. Fungal Biol. Biotechnol. 8, 20 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cordero, R. J. B., Mattoon, E. R., Ramos, Z. & Casadevall, A. The hypothermic nature of fungi. Proc. Natl Acad. Sci. USA 120, e2221996120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments