Friday, January 30, 2026
No menu items!
HomeNatureFrequency reproducibility of solid-state thorium-229 nuclear clocks

Frequency reproducibility of solid-state thorium-229 nuclear clocks

  • Tiedau, J. et al. Laser excitation of the Th-229 nucleus. Phys. Rev. Lett. 132, 182501 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Elwell, R. et al. Laser excitation of the 229Th nuclear isomeric transition in a solid-state host. Phys. Rev. Lett. 133, 013201 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhang, C. et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock. Nature 633, 63–70 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhang, C. et al. 229ThF4 thin films for solid-state nuclear clocks. Nature 636, 603–608 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Beeks, K. et al. Fine-structure constant sensitivity of the Th-229 nuclear clock transition. Nat. Commun. 16, 9147 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Caputo, A. et al. Sensitivity of nuclear clocks to new physics. Phys. Rev. C 112, L031302 (2025).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Fuchs, E. et al. Searching for dark matter with the 229Th nuclear lineshape from laser spectroscopy. Phys. Rev. X 15, 021055 (2025).

    CAS 

    Google Scholar
     

  • Kazakov, G. A. et al. Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Aeppli, A., Kim, K., Warfield, W., Safronova, M. S. & Ye, J. Clock with 8 × 10−19 systematic uncertainty. Phys. Rev. Lett. 133, 023401 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Higgins, J. S. et al. Temperature sensitivity of a thorium-229 solid-state nuclear clock. Phys. Rev. Lett. 134, 113801 (2025).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Beeks, K. et al. Growth and characterization of thorium-doped calcium fluoride single crystals. Sci. Rep. 13, 3897 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Marshall, M. C. et al. High-stability single-ion clock with 5.5 × 10−19 systematic uncertainty. Phys. Rev. Lett. 135, 033201 (2025).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the Th 229 nucleus. Phys. Rev. Lett. 104, 200802 (2010).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Tkalya, E. V., Varlamov, V. O., Lomonosov, V. V. & Nikulin, S. A. Processes of the nuclear isomer 229mTh (3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons. Phys. Scr. 53, 296 (1996).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181 (2003).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Peik, E. et al. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 6, 034002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020).

    Article 
    ADS 

    Google Scholar
     

  • von der Wense, L. et al. Direct detection of the 229Th nuclear clock transition. Nature 533, 47–51 (2016).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Seiferle, B. et al. Energy of the 229Th nuclear clock transition. Nature 573, 243–246 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Masuda, T. et al. X-ray pumping of the 229Th nuclear clock isomer. Nature 573, 238–242 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Yamaguchi, A. et al. Energy of the 229Th nuclear clock isomer determined by absolute γ-ray energy difference. Phys. Rev. Lett. 123, 222501 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Sikorsky, T. et al. Measurement of the 229Th isomer energy with a magnetic microcalorimeter. Phys. Rev. Lett. 125, 142503 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhang, C. et al. Tunable VUV frequency comb for 229mTh nuclear spectroscopy. Opt. Lett. 47, 5591 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Elwell, R. et al. Laser-based conversion electron Mössbauer spectroscopy of 229ThO2. Nature 648, 300–305 (2025).

  • Beeks, K. et al. Optical transmission enhancement of ionic crystals via superionic fluoride transfer: growing VUV-transparent radioactive crystals. Phys. Rev. B 109, 094111 (2024).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Dessovic, P. et al. 229Thorium-doped calcium fluoride for nuclear laser spectroscopy. J. Phys. Condens. Matter 26, 105402 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiraki, T. et al. Controlling 229Th isomeric state population in a VUV transparent crystal. Nat. Commun. 15, 5536 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Nalikowski, K., Veryazov, V., Beeks, K., Schumm, T. & Krośnicki, M. Embedded cluster approach for accurate electronic structure calculations of 229Th:CaF2. Phys. Rev. B 111, 115103 (2025).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Hiraki, T. et al. Laser Mössbauer spectroscopy of 229Th. Preprint at https://arxiv.org/abs/2509.00041 (2025).

  • Schaden, F. et al. Laser-induced quenching of the Th-229 nuclear clock isomer in calcium fluoride. Phys. Rev. Res. 7, L022036 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Mestechkin, M. M. Electric field gradient in cubic and other ionic crystals. J. Phys. Condens. Matter 7, 611–623 (1995).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Dunlap, B. & Kalvius, G. in Handbook on the Physics and Chemistry of the Actinides (eds Freeman, A. J. & Lander, G. H.) Vol. 2, 331–434 (North-Holland, 1985).

  • Torumba, D., Parlinski, K., Rots, M. & Cottenier, S. Temperature dependence of the electric-field gradient in hcp-Cd from first principles. Phys. Rev. B 74, 144304 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Haas, H. Temperature dependence of electric-field gradient in Zn and Cd: Replacing the T3/2 law. Phys. Rev. B 109, 064104 (2024).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Shrivastava, K. N. Temperature dependence of the Mössbauer isomer shift. Hyperfine Interact. 26, 817–843 (1985).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Milner, W. R. et al. Demonstration of a timescale based on a stable optical carrier. Phys. Rev. Lett. 123, 173201 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Eshelby, J. D. in Solid State Physics (eds Seitz, F. & Turnbull, D.) Vol. 3, 79–144 (Academic Press, 1956).

  • Stoneham, A. M. Shapes of inhomogeneously broadened resonance lines in solids. Rev. Mod. Phys. 41, 82–108 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Pelzl, J., Vargas, H., Dautreppe, D. & Schulz, H. Influence of point defects on the nuclear quadrupole resonance of 35Cl in KClO3 and NaClO3. J. Phys. Chem. Solids 36, 791–796 (1975).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kanert, O., Kotzur, D. & Mehring, M. Influence of point defects and dislocations on the line shape of nuclear magnetic resonance signals. Phys. Status Solidi B Basic Solid State Phys. 36, 291–300 (1969).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Cohen, M. H. & Reif, F. in Solid State Physics (eds Seitz, F. & Turnbull, D.), Vol. 5, 321–438 (Academic Press, 1957).

  • Gong, Q. et al. Structures and properties of high-concentration doped Th:CaF2 single crystals for solid-state nuclear clock materials. Inorg. Chem. 63, 3807–3814 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beeks, K. The Nuclear Excitation of Thorium-229 in the CaF2 Environment: Development of a Crystalline Nuclear Clock. PhD thesis, Technische Universität Wien, Vienna (2022).

  • Takatori, S. et al. Characterization of the thorium-229 defect structure in CaF2 crystals. New J. Phys. 27, 043024 (2025).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Pastor, R. C. & Arita, K. Preparation and crystal growth of ThF4. Mater. Res. Bull. 9, 579–583 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Morgan, H. W. T. et al. A spinless crystal for a high-performance solid-state 229Th nuclear clock. Preprint at https://arxiv.org/abs/2503.11374 (2025).

  • Reissner, M. in Modern Mössbauer Spectroscopy: New Challenges Based on Cutting-Edge Techniques (eds Yoshida, Y. & Langouche, G.), 381–444 (Springer, 2021).

  • Liechti, O. & Kind, R. NMR-NQR rotation patterns of single crystals with quadrupolar inhomogeneities. J. Mag. Reson. 85, 480–491 (1989).

    CAS 
    ADS 

    Google Scholar
     

  • Hiraki, T. et al. Experimental apparatus for detection of radiative decay of 229Th isomer from Th-doped CaF2. Hyperfine Interact. 245, 14 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Terhune, J. E. S. et al. Photoinduced quenching of the 229Th isomer in a solid-state host. Phys. Rev. Res. 7, L022062 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Guan, M. et al. X-ray-induced quenching of the 229Th clock isomer in CaF2. Preprint at https://arxiv.org/abs/2505.03852 (2025).

  • Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Stellmer, S., Schreitl, M. & Schumm, T. Radioluminescence and photoluminescence of Th:CaF2 crystals. Sci. Rep. 5, 15580 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Christiansen, J. et al. Temperature dependence of the electric field gradient in noncubic metals. Z. Phys. B Condens. Matter 24, 177–187 (1976).

    CAS 
    ADS 

    Google Scholar
     

  • Brown, R. J. C. Anomalous temperature dependence of NQR frequencies. Z. Naturforsch. A 45, 449–458 (1990).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Shier, J. S. & Taylor, R. D. Temperature-dependent isomer shift and anharmonic binding of Sn 119 in Nb 3 Sn from Mössbauer-effect measurements. Phys. Rev. 174, 346–350 (1968).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Coey, J. M. D., Sawatzky, G. A. & Morrish, A. H. Magnetization and temperature dependence of the Mössbauer spectrum shift for an insulator. Phys. Rev. 184, 334–337 (1969).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Ooi, T. et al. Th-229 nuclear clock frequency record (JILA). Zenodo https://doi.org/10.5281/zenodo.15751158 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments