Tuesday, November 5, 2024
No menu items!
HomeNatureFrequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic...

Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock

  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aeppli, A., Kim, K., Warfield, W., Safronova, M. S. & Ye, J. Clock with 8 × 10−19 systematic uncertainty. Phys. Rev. Lett. 133, 023401 (2024).

  • Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. EPL – Europhys. Lett. 61, 181 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tkalya, E. V., Varlamov, V. O., Lomonosov, V. V. & Nikulin, S. A. Processes of the nuclear isomer 229mTh(3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons. Phys. Scr. 53, 296 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, J. & Zoller, P. Essay: quantum sensing with atomic, molecular, and optical platforms for fundamental physics. Phys. Rev. Lett. 132, 190001 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Peik, E. et al. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 6, 034002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fadeev, P., Berengut, J. C. & Flambaum, V. V. Sensitivity of 229Th nuclear clock transition to variation of the fine-structure constant. Phys. Rev. A 102, 052833 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nickerson, B. S. et al. Driven electronic bridge processes via defect states in 229Th-doped crystals. Phys. Rev. A 103, 053120 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Helmer, R. G. & Reich, C. W. An excited state of 229Th at 3.5 eV. Phys. Rev. C 49, 1845–1858 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guimarães-Filho, Z. O. & Helene, O. Energy of the 3/2+ state of 229Th reexamined. Phys. Rev. C 71, 044303 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Beck, B. R. et al. Energy splitting of the ground-state doublet in the nucleus 229Th. Phys. Rev. Lett. 98, 142501 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Beck, B. R. et al. Improved Value for the Energy Splitting of the Ground-State Doublet in the Nucleus 229mTh Report No. LLNL-PROC-415170 (Lawrence Livermore National Laboratory, 2009).

  • Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Seiferle, B. et al. Energy of the 229Th nuclear clock transition. Nature 573, 243–246 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Masuda, T. et al. X-ray pumping of the 229Th nuclear clock isomer. Nature 573, 238–242 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi, A. et al. Energy of the 229Th nuclear clock isomer determined by absolute γ-ray energy difference. Phys. Rev. Lett. 123, 222501 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sikorsky, T. et al. Measurement of the 229Th isomer energy with a magnetic microcalorimeter. Phys. Rev. Lett. 125, 142503 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • von der Wense, L. et al. Direct detection of the 229Th nuclear clock transition. Nature 533, 47–51 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiraki, T. et al. Controlling 229Th isomeric state population in a VUV transparent crystal. Nat. Commun. 15, 5536 (2024).

  • Yamaguchi, A. et al. Laser spectroscopy of triply charged 229Th isomer for a nuclear clock. Nature 629, 62–66 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiedau, J. et al. Laser excitation of the Th-229 nucleus. Phys. Rev. Lett. 132, 182501 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Elwell, R. et al. Laser excitation of the 229Th nuclear isomeric transition in a solid-state host. Phys. Rev. Lett. 133, 013201 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tkalya, E. V. Spontaneous emission probability for M1 transition in a dielectric medium: 229mTh (3/2+, 3.5±1.0 eV) decay. JETP Lett. 71, 311–313 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kazakov, G. A. et al. Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Milner, W. R. et al. Demonstration of a timescale based on a stable optical carrier. Phys. Rev. Lett. 123, 173201 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dreissen, L. S. et al. High-precision Ramsey-comb spectroscopy based on high-harmonic generation. Phys. Rev. Lett. 123, 143001 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement avity. Phys. Rev. Lett. 94, 193201 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon. 8, 530–536 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pupeza, I., Zhang, C., Högner, M. & Ye, J. Extreme-ultraviolet frequency combs for precision metrology and attosecond science. Nat. Photon. 15, 175–186 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, C. et al. Tunable VUV frequency comb for 229mTh nuclear spectroscopy. Opt. Lett. 47, 5591 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ycomb – Compact frequency comb. IMRA https://www.imra.com/products/imra-scientific/ycomb-100 (2021).

  • Pronin, O. et al. Ultrabroadband efficient intracavity XUV output coupler. Opt. Express 19, 10232–10240 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fischer, J. et al. Efficient XUV-light out-coupling of intra-cavity high harmonics by a coated grazing-incidence plate. Opt. Express 30, 30969–30979 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Beeks, K. et al. Growth and characterization of thorium-doped calcium fluoride single crystals. Sci. Rep. 13, 3897 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beeks, K. et al. Optical transmission enhancement of ionic crystals via superionic fluoride transfer: growing VUV-transparent radioactive crystals. Phys. Rev. B 109, 094111 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stellmer, S., Schreitl, M. & Schumm, T. Radioluminescence and photoluminescence of Th:CaF2 crystals. Sci. Rep. 5, 15580 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dessovic, P. et al. 229Thorium-doped calcium fluoride for nuclear laser spectroscopy. J. Phys. Condens. Matter 26, 105402 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunlap, B. D. & Kalvius, G. M. in Handbook on the Physics and Chemistry of the Actinides Vol. 2 (eds Freeman, A. J. & Lander, G. H.) 331–434 (Elsevier Science, 1985).

  • Porsev, S. G., Safronova, M. S. & Kozlov, M. G. Precision calculation of hyperfine constants for extracting nuclear moments of 229Th. Phys. Rev. Lett. 127, 253001 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • von der Wense, L. & Zhang, C. Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock. Eur. Phys. J. D 74, 146 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Travers, J. C., Grigorova, T. F., Brahms, C. & Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon. 13, 547–554 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liao, W.-T., Das, S., Keitel, C. H. & Pálffy, A. Coherence-enhanced optical determination of the 229Th isomeric transition. Phys. Rev. Lett. 109, 262502 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

  • Sinclair, L. C. et al. Invited article: a compact optically coherent fiber frequency comb. Rev. Sci. Instrum. 86, 081301 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Black, E. D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Allison, T. K., Cingöz, A., Yost, D. C. & Ye, J. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yost, D. C. et al. Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Opt. Express 19, 23483–23493 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Beeks, K. The nuclear excitation of thorium-229 in the CaF2 environment: development of a crystalline nuclear clock. PhD thesis, Technische Universität, Wien (2022).

  • Rix, S. et al. Formation of metallic colloids in CaF2 by intense ultraviolet light. Appl. Phys. Lett. 99, 261909–261909 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Seiferle, B., von der Wense, L., Laatiaoui, M. & Thirolf, P. G. A VUV detection system for the direct photonic identification of the first excited isomeric state of 229Th. Eur. Phys. J. D 70, 58 (2016).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments