Tonks, B. T. & Melosh, H. J. Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993).
Bizzarro, M., Baker, J. A., Haack, H. & Lundgaard, K. L. Rapid timescales for accrestion and melting of differentiated planetesimals inferred from 26Al–26Mg chronometry. Astonom. J. 632, L41 (2005).
O’Neill, H. C. St. & Palme, H. in The Earth’s Mantle: Composition, Structure and Evolution (ed. Jackson, I.) 3–126 (Cambridge Univ. Press, 1998).
Abe, Y. Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100, 27–39 (1997).
Davies, G. F. Dynamic Earth 458 (Cambridge Univ. Press, 1999).
Mare, E. R., Tomkins, A. G. & Godel, B. M. Restriction of parent body heating by metal-troilite melting: thermal models for the ordinary chondrites. Meteorit. Planet. Sci. 49, 636–651 (2014).
Minarik, W. G., Ryerson, F. J. & Watson, E. B. Textural entrapment of core-forming melts. Science 272, 530–533 (1996).
Hirschmann, M. M. Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosys. 1, GC000070 (2000).
Jurewicz, A. J. G., Mittlefehldt, D. W. & Jones, J. J. Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts. Geochim. Cosmochim. Acta 57, 2123–2139 (1993).
Agee, C. B., Li, J., Shannon, M. C. & Circone, S. Pressure–temperature phase diagram for the Allende meteorite. J. Geophys. Res. 100, 17725–17740 (1995).
Rubie, D. C., Melosh, H. J., Reid, J. E., Liebske, C. & Righter, K. Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205, 239–255 (2003).
Wood, B. J., Walter, M. J. & Wade, J. Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006).
Neri, A. et al. Textural evolution of metallic phases in a convecting magma ocean: a 3D microtomography study. Phys. Earth Planet. Inter. 319, 106771 (2021).
O’Neill, H. S. & Palme, H. Collisional erosion and the non-chondritic composition of the terrestrial planets. Phil. Trans. R. Soc. Lond. 366, 4205–4238 (2008).
O’Neill, C., Marchi, S. & Bottke, W. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).
Caro, G. & Klein, T. in Timescales of Magmatic Processes (eds Dosseto, A. et al.) 9–51 (Wiley-Blackwell, 2011).
Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Ga ago. Nature 409, 175–178 (2001).
Fisher, C. M. & Vervoort, J. D. Using the magmatic record to constrain the growth of continental crust—the Eoarchean zircon Hf record of Greenland. Earth Planet. Sci. Lett. 488, 79–91 (2018).
Xie, M. & Xiao, Z. A new chronology from debiased crater densitites: Implications for the origin and evolution of lunar impactors. Earth Planet. Sci. Lett. 602, 117963 (2003).
Day, J. M. D. et al. Early formation of evolved asteroidal crust. Nature 457, 179–183 (2009).
Usui, T., Jones, J. H. & Mittlefehldt, D. W. A partial melting study of an ordinary (H) chondrite composition with application to the unique achondrite Graves Nunataks 06128 and 06129. Meteor. Planet. Sci. 50, 759–781 (2015).
Caro, G., Bourdon, B., Wood, B. J. & Corgne, A. Trace element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436, 246–249 (2005).
Solomatov, V. S. & Stevenson, D. J. Nonfractional crystallization of a terrestrial magma ocean. J. Geophys. Res. 98, 5391–5406 (1993).
Maurice, M. et al. Onset of solid‐state mantle convection and mixing during magma ocean solidification. J. Geophys. Res. 122, 577–598 (2017).
Turcotte D. L. & Schubert, G. Geodynamics: Applications of Continuum Physics to Geological Problems (John Wiley and Sons, 1982).
Obata, M. & Takazawa, E. Compositional continuity and discontinuity in the Horoman peridotite, Japan, and its implication for melt extraction processes in partially molten upper mantle. J. Petrol. 45, 223–234 (2024).
Shaw, D. M. Trace Elements in Magmas: A Theoretical Treatment (Cambridge Univ. Press, 2006).
Lodders, K. Relative atomic Solar System abundances, mass fractionations, and atomic masses of the elements and their isotopes, composition of the solar photosphere, and compositions of the major meteorite groups. Space Sci. Rev. 217, 44 (2021).
Wade, J. & Wood, B. J. The Earth’s ‘missing’ niobium may be in the core. Nature 409, 75–78 (2001).
Jochum, K. P., Hofmann, A. W., Seufert, M., Stoll, B. & Polat, A. Niobium in planetary cores: consequences for the interpretation of terrestrial Nb systematics. Am. Geophys. Union V71C-03 (2002).
Munker, C., Fonseca, R. O. C. & Schulz, T. Silicate Earth’s missing niobium may have been sequestered into asteroidal cores. Nat. Geosci. 10, 822–826 (2017).
O’Nions, R. K. & McKenzie, D. Melting and continent generation. Earth Planet. Sci. Lett. 90, 449–456 (1988).
Elkins-Tanton, L. T. Magma oceans in the inner Solar System. Ann. Rev. Earth Planet. Sci. 40, 113–139 (2012).
Leitzke, F. P. et al. Evidence for a late missing late veneer from 182W and 142Nd systematics in the Archaean Sao Francisco Craton. Earth Planet. Sci. Lett. 647, 119022 (2024).
Rushmer, T., Petford, N., Humayun, M. & Campbell, A. J. Fe–liquid segregation in deforming planetesimals: coupling core-forming compositions with transport phenomena. Earth Planet. Sci. Lett. 239, 185–202 (2005).
Wood, B. J. & Halliday, A. N. The lead isotopic age of the Earth can be explained by core formation alone. Nature 465, 767–770 (2010).
Mann, U., Frost, D. J., Rubie, D. C., Becker, H. & Audetat, A. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures—implications for the origin of highly siderophyle element concentrations in the Earth’s mantle. Geochim. Cosmochim. Acta 84, 593–613 (2012).
Walker, R. J. Siderophile elements in tracing planetary formation and evolution. Geochem. Perspect. 5, 1–145 (2016).
Kimura, K., Lewis, R. S. & Anders, E. Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochim. Cosmochim. Acta 38, 683–701 (1974).
Maier, W. et al. Progressive mixing of meteoric veneer into the early Earth’s deep mantle. Nature 460, 620–623 (2009).
Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable continents did not form by subduction. Nature 543, 239–243 (2017).
Armstrong, R. L. The persistent myth of crustal growth. Aust. J. Earth Sci. 38, 613–630 (1991).
Green, D. H. & Ringwood, A. E. The genesis of basaltic magmas. Contrib. Mineral. Petrol. 15, 103–190 (1967).
Rudnick, R. L. & Gao, S. in Treatise on Geochemistry 1–64 (Executive editors H.D. Holland and K.K. Turekian, Elsevier, 2003).
Davies, G. F. On the emergence of plate tectonics. Geology 20, 963–966 (1992).
Campbell, I. H. & Taylor, S. R. No water, no granties, no continents. Geophys. Res. Lett. 10, 1061–1064 (1983).
Arndt, N. How did the continental crust form: no basalt, no water, no granite. Precamb. Res. 397, 107196 (2023).
Rapp, R. P. & Watson, E. B. Dehydration melting of metasbasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J. Petrol. 36, 891–931 (1995).
Davidson, J., Turner, S., Dosseto, A. & Handley, H. Amphibole “sponge” in arc crust? Geology 35, 787–790 (2017).
Turner, S., Rushmer, T., Reagan, M. & Moyen, J.-F. Heading down early on? Start of subduction on Earth. Geology 42, 139–142 (2014).
Roth, A. S. G. et al. Combined 147,146Sm–143,142Nd constraints on the longevity and residence time of early terrestrial crust. Geochem. Geophys. Geosys. 15, 2329–2345 (2014).
Hyung, E. & Jacobsen, S. B. The 142Nd/144Nd variat1ons in mantle-derived rocks provide constraints on the stirring rate of the mantle from the Hadean to the present. Earth Atmos. Planet. Sci. 117, 14738–14744 (2020).
Peters, B. J., Carlson, R. W., Day, J. M. D. & Horan, M. F. Hadean silicate differentiation preserved by anomalous 142Nd/144Nd ratios in the Reunion hotspot source. Nature 555, 89–93 (2018).
Watson, E. B. & Harrison, T. M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308, 841–844 (2005).
Bédard, J. H. Stagnant lids and mantle overturns: implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front. 9, 19–49 (2018).
O’Neill, C. & Debaille, V. The evolution of Hadean–Eoarchaean geodynamics. Earth Planet. Sci. Lett. 406, 49–58 (2014).
Turner, S., Wilde, S., Woerner, G., Schaefer, B. & Lai, Y.-J. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nat. Commun. https://doi.org/10.1038/s41467-020-14857-1 (2020).
Harrison, T. M. The Hadean crust: evidence from > 4 Ga zircons. Ann. Rev. Earth Planet. Sci. 37, 479–505 (2009).
Caro, G., Bourdon, B., Birk, J.-L. & Moorbath, S. 146Sm–142Nd evidence for early differentiation of the Earth’s mantle. Nature 423, 428–432 (2003).
Plank, T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 46, 921–944 (2005).
O’Neil, J., Carlson, R. W., Paquette, J.-L. & Francis, D. Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precamb. Res. 220, 23–44 (2012).
Taylor, S. R. & McLennan, S. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995).
Salters, V. J. M. & Stracke, A. The composition of the depleted mantle. Geochem. Geophys. Geosys, 5, GC000597 (2004).
Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).
Peucker-Ehrenbrink, B. & Jahn, B.-M. Rhenium–osmium systematics and platinum group elelement concentrations: loess and the upper continental crust. Geochem. Geophys. Geosys. 2, GC000172 (2001).
Steenstra, E. S. et al. Metal-silicate partitioning systematics of siderophile elements at reducing conditions: A new experimental database. Icarus 335, 113391 (2020).
McDonough, W. F. & Sun, S.-S. The composition of the Earth. Earth Planet. Sci. Lett. 120, 223–253 (1995).
O’Neill, C., Turner, S. & Rushmer, T. The inception of plate tectonics: a record of failure. Phil. Trans. R. Soc. A https://doi.org/10.1098/rsta.2017.0414 (2018).
Robinson, J. A. C. & Wood, B. J. The depth of the garnet/spinel transition in fractionally melting peridotite. Earth Planet. Sci. Lett. 164, 277–284 (1998).
Wood, B. J. & Blundy, J. D. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate liquid. Contrib. Mineral. Petrol. 129, 166–181 (1997).
Wood, B. J., Wade, J. & Kilburn, M. R. Core formation and the oxidation state of the Earth: additional constraints from Nb, V and Cr partitioning. Geochim. Cosmochim. Acta 72, 1415–1426 (2008).
Mann, U., Frost, D. J. & Rubie, D. C. Evidence for high-pressure core–mantle differentiation from the metal–silicate partitioning of lithophile and weakly-siderophile elements. Geochim. Cosmochim. Acta 73, 7360–7386 (2009).
Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005).
Frossard, P., Israel, C., Bouvier, A. & Boyet, M. Earth’s composition was modified by collisional erosion. Science 377, 1529–1532 (2022).
Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).
Fang, L. et al. Half-life and initial Solar System abundance of 146Sm determined from the oldest andesitic meteorite. Proc. Natl Acad. Sci. USA 119, e2120933119 (2022).
O’Neill, C. & Turner, S. Formation and composition of the Earth’s Hadean protocrust. Zenodo https://doi.org/10.5281/zenodo.14614029 (2025).