Thursday, April 3, 2025
No menu items!
HomeNatureFormation and composition of Earth’s Hadean protocrust

Formation and composition of Earth’s Hadean protocrust

  • Tonks, B. T. & Melosh, H. J. Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993).

    ADS 
    MATH 

    Google Scholar
     

  • Bizzarro, M., Baker, J. A., Haack, H. & Lundgaard, K. L. Rapid timescales for accrestion and melting of differentiated planetesimals inferred from 26Al–26Mg chronometry. Astonom. J. 632, L41 (2005).

    ADS 

    Google Scholar
     

  • O’Neill, H. C. St. & Palme, H. in The Earth’s Mantle: Composition, Structure and Evolution (ed. Jackson, I.) 3–126 (Cambridge Univ. Press, 1998).

  • Abe, Y. Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100, 27–39 (1997).

    ADS 
    MATH 

    Google Scholar
     

  • Davies, G. F. Dynamic Earth 458 (Cambridge Univ. Press, 1999).

  • Mare, E. R., Tomkins, A. G. & Godel, B. M. Restriction of parent body heating by metal-troilite melting: thermal models for the ordinary chondrites. Meteorit. Planet. Sci. 49, 636–651 (2014).

    ADS 

    Google Scholar
     

  • Minarik, W. G., Ryerson, F. J. & Watson, E. B. Textural entrapment of core-forming melts. Science 272, 530–533 (1996).

    ADS 
    MATH 

    Google Scholar
     

  • Hirschmann, M. M. Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosys. 1, GC000070 (2000).

    MATH 

    Google Scholar
     

  • Jurewicz, A. J. G., Mittlefehldt, D. W. & Jones, J. J. Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts. Geochim. Cosmochim. Acta 57, 2123–2139 (1993).

    ADS 

    Google Scholar
     

  • Agee, C. B., Li, J., Shannon, M. C. & Circone, S. Pressure–temperature phase diagram for the Allende meteorite. J. Geophys. Res. 100, 17725–17740 (1995).

    ADS 

    Google Scholar
     

  • Rubie, D. C., Melosh, H. J., Reid, J. E., Liebske, C. & Righter, K. Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205, 239–255 (2003).

    ADS 

    Google Scholar
     

  • Wood, B. J., Walter, M. J. & Wade, J. Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Neri, A. et al. Textural evolution of metallic phases in a convecting magma ocean: a 3D microtomography study. Phys. Earth Planet. Inter. 319, 106771 (2021).

    MATH 

    Google Scholar
     

  • O’Neill, H. S. & Palme, H. Collisional erosion and the non-chondritic composition of the terrestrial planets. Phil. Trans. R. Soc. Lond. 366, 4205–4238 (2008).

    ADS 
    MATH 

    Google Scholar
     

  • O’Neill, C., Marchi, S. & Bottke, W. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).

    ADS 
    MATH 

    Google Scholar
     

  • Caro, G. & Klein, T. in Timescales of Magmatic Processes (eds Dosseto, A. et al.) 9–51 (Wiley-Blackwell, 2011).

  • Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Ga ago. Nature 409, 175–178 (2001).

    ADS 
    PubMed 

    Google Scholar
     

  • Fisher, C. M. & Vervoort, J. D. Using the magmatic record to constrain the growth of continental crust—the Eoarchean zircon Hf record of Greenland. Earth Planet. Sci. Lett. 488, 79–91 (2018).

    ADS 
    MATH 

    Google Scholar
     

  • Xie, M. & Xiao, Z. A new chronology from debiased crater densitites: Implications for the origin and evolution of lunar impactors. Earth Planet. Sci. Lett. 602, 117963 (2003).


    Google Scholar
     

  • Day, J. M. D. et al. Early formation of evolved asteroidal crust. Nature 457, 179–183 (2009).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Usui, T., Jones, J. H. & Mittlefehldt, D. W. A partial melting study of an ordinary (H) chondrite composition with application to the unique achondrite Graves Nunataks 06128 and 06129. Meteor. Planet. Sci. 50, 759–781 (2015).

    ADS 
    MATH 

    Google Scholar
     

  • Caro, G., Bourdon, B., Wood, B. J. & Corgne, A. Trace element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436, 246–249 (2005).

    ADS 
    PubMed 

    Google Scholar
     

  • Solomatov, V. S. & Stevenson, D. J. Nonfractional crystallization of a terrestrial magma ocean. J. Geophys. Res. 98, 5391–5406 (1993).

    ADS 
    MATH 

    Google Scholar
     

  • Maurice, M. et al. Onset of solid‐state mantle convection and mixing during magma ocean solidification. J. Geophys. Res. 122, 577–598 (2017).

    MATH 

    Google Scholar
     

  • Turcotte D. L. & Schubert, G. Geodynamics: Applications of Continuum Physics to Geological Problems (John Wiley and Sons, 1982).

  • Obata, M. & Takazawa, E. Compositional continuity and discontinuity in the Horoman peridotite, Japan, and its implication for melt extraction processes in partially molten upper mantle. J. Petrol. 45, 223–234 (2024).

    ADS 
    MATH 

    Google Scholar
     

  • Shaw, D. M. Trace Elements in Magmas: A Theoretical Treatment (Cambridge Univ. Press, 2006).

  • Lodders, K. Relative atomic Solar System abundances, mass fractionations, and atomic masses of the elements and their isotopes, composition of the solar photosphere, and compositions of the major meteorite groups. Space Sci. Rev. 217, 44 (2021).

    ADS 

    Google Scholar
     

  • Wade, J. & Wood, B. J. The Earth’s ‘missing’ niobium may be in the core. Nature 409, 75–78 (2001).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jochum, K. P., Hofmann, A. W., Seufert, M., Stoll, B. & Polat, A. Niobium in planetary cores: consequences for the interpretation of terrestrial Nb systematics. Am. Geophys. Union V71C-03 (2002).

  • Munker, C., Fonseca, R. O. C. & Schulz, T. Silicate Earth’s missing niobium may have been sequestered into asteroidal cores. Nat. Geosci. 10, 822–826 (2017).

  • O’Nions, R. K. & McKenzie, D. Melting and continent generation. Earth Planet. Sci. Lett. 90, 449–456 (1988).

    ADS 
    MATH 

    Google Scholar
     

  • Elkins-Tanton, L. T. Magma oceans in the inner Solar System. Ann. Rev. Earth Planet. Sci. 40, 113–139 (2012).

    ADS 
    MATH 

    Google Scholar
     

  • Leitzke, F. P. et al. Evidence for a late missing late veneer from 182W and 142Nd systematics in the Archaean Sao Francisco Craton. Earth Planet. Sci. Lett. 647, 119022 (2024).


    Google Scholar
     

  • Rushmer, T., Petford, N., Humayun, M. & Campbell, A. J. Fe–liquid segregation in deforming planetesimals: coupling core-forming compositions with transport phenomena. Earth Planet. Sci. Lett. 239, 185–202 (2005).

    ADS 

    Google Scholar
     

  • Wood, B. J. & Halliday, A. N. The lead isotopic age of the Earth can be explained by core formation alone. Nature 465, 767–770 (2010).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mann, U., Frost, D. J., Rubie, D. C., Becker, H. & Audetat, A. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures—implications for the origin of highly siderophyle element concentrations in the Earth’s mantle. Geochim. Cosmochim. Acta 84, 593–613 (2012).

    ADS 

    Google Scholar
     

  • Walker, R. J. Siderophile elements in tracing planetary formation and evolution. Geochem. Perspect. 5, 1–145 (2016).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kimura, K., Lewis, R. S. & Anders, E. Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochim. Cosmochim. Acta 38, 683–701 (1974).

    ADS 

    Google Scholar
     

  • Maier, W. et al. Progressive mixing of meteoric veneer into the early Earth’s deep mantle. Nature 460, 620–623 (2009).

    ADS 
    MATH 

    Google Scholar
     

  • Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable continents did not form by subduction. Nature 543, 239–243 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • Armstrong, R. L. The persistent myth of crustal growth. Aust. J. Earth Sci. 38, 613–630 (1991).

    ADS 
    MATH 

    Google Scholar
     

  • Green, D. H. & Ringwood, A. E. The genesis of basaltic magmas. Contrib. Mineral. Petrol. 15, 103–190 (1967).

    ADS 
    MATH 

    Google Scholar
     

  • Rudnick, R. L. & Gao, S. in Treatise on Geochemistry 1–64 (Executive editors H.D. Holland and K.K. Turekian, Elsevier, 2003).

  • Davies, G. F. On the emergence of plate tectonics. Geology 20, 963–966 (1992).

    ADS 
    MATH 

    Google Scholar
     

  • Campbell, I. H. & Taylor, S. R. No water, no granties, no continents. Geophys. Res. Lett. 10, 1061–1064 (1983).

    ADS 
    MATH 

    Google Scholar
     

  • Arndt, N. How did the continental crust form: no basalt, no water, no granite. Precamb. Res. 397, 107196 (2023).

    MATH 

    Google Scholar
     

  • Rapp, R. P. & Watson, E. B. Dehydration melting of metasbasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J. Petrol. 36, 891–931 (1995).

    ADS 
    MATH 

    Google Scholar
     

  • Davidson, J., Turner, S., Dosseto, A. & Handley, H. Amphibole “sponge” in arc crust? Geology 35, 787–790 (2017).

    ADS 

    Google Scholar
     

  • Turner, S., Rushmer, T., Reagan, M. & Moyen, J.-F. Heading down early on? Start of subduction on Earth. Geology 42, 139–142 (2014).

    ADS 

    Google Scholar
     

  • Roth, A. S. G. et al. Combined 147,146Sm–143,142Nd constraints on the longevity and residence time of early terrestrial crust. Geochem. Geophys. Geosys. 15, 2329–2345 (2014).

  • Hyung, E. & Jacobsen, S. B. The 142Nd/144Nd variat1ons in mantle-derived rocks provide constraints on the stirring rate of the mantle from the Hadean to the present. Earth Atmos. Planet. Sci. 117, 14738–14744 (2020).


    Google Scholar
     

  • Peters, B. J., Carlson, R. W., Day, J. M. D. & Horan, M. F. Hadean silicate differentiation preserved by anomalous 142Nd/144Nd ratios in the Reunion hotspot source. Nature 555, 89–93 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Watson, E. B. & Harrison, T. M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308, 841–844 (2005).

    ADS 
    PubMed 

    Google Scholar
     

  • Bédard, J. H. Stagnant lids and mantle overturns: implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front. 9, 19–49 (2018).


    Google Scholar
     

  • O’Neill, C. & Debaille, V. The evolution of Hadean–Eoarchaean geodynamics. Earth Planet. Sci. Lett. 406, 49–58 (2014).

    ADS 
    MATH 

    Google Scholar
     

  • Turner, S., Wilde, S., Woerner, G., Schaefer, B. & Lai, Y.-J. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nat. Commun. https://doi.org/10.1038/s41467-020-14857-1 (2020).

  • Harrison, T. M. The Hadean crust: evidence from > 4 Ga zircons. Ann. Rev. Earth Planet. Sci. 37, 479–505 (2009).

    ADS 
    MATH 

    Google Scholar
     

  • Caro, G., Bourdon, B., Birk, J.-L. & Moorbath, S. 146Sm–142Nd evidence for early differentiation of the Earth’s mantle. Nature 423, 428–432 (2003).

    ADS 
    PubMed 

    Google Scholar
     

  • Plank, T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 46, 921–944 (2005).

    ADS 
    MATH 

    Google Scholar
     

  • O’Neil, J., Carlson, R. W., Paquette, J.-L. & Francis, D. Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precamb. Res. 220, 23–44 (2012).

    ADS 

    Google Scholar
     

  • Taylor, S. R. & McLennan, S. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995).

    ADS 
    MATH 

    Google Scholar
     

  • Salters, V. J. M. & Stracke, A. The composition of the depleted mantle. Geochem. Geophys. Geosys, 5, GC000597 (2004).

    MATH 

    Google Scholar
     

  • Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    ADS 
    MATH 

    Google Scholar
     

  • Peucker-Ehrenbrink, B. & Jahn, B.-M. Rhenium–osmium systematics and platinum group elelement concentrations: loess and the upper continental crust. Geochem. Geophys. Geosys. 2, GC000172 (2001).


    Google Scholar
     

  • Steenstra, E. S. et al. Metal-silicate partitioning systematics of siderophile elements at reducing conditions: A new experimental database. Icarus 335, 113391 (2020).

    MATH 

    Google Scholar
     

  • McDonough, W. F. & Sun, S.-S. The composition of the Earth. Earth Planet. Sci. Lett. 120, 223–253 (1995).

    MATH 

    Google Scholar
     

  • O’Neill, C., Turner, S. & Rushmer, T. The inception of plate tectonics: a record of failure. Phil. Trans. R. Soc. A https://doi.org/10.1098/rsta.2017.0414 (2018).

  • Robinson, J. A. C. & Wood, B. J. The depth of the garnet/spinel transition in fractionally melting peridotite. Earth Planet. Sci. Lett. 164, 277–284 (1998).

    ADS 
    MATH 

    Google Scholar
     

  • Wood, B. J. & Blundy, J. D. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate liquid. Contrib. Mineral. Petrol. 129, 166–181 (1997).

    ADS 

    Google Scholar
     

  • Wood, B. J., Wade, J. & Kilburn, M. R. Core formation and the oxidation state of the Earth: additional constraints from Nb, V and Cr partitioning. Geochim. Cosmochim. Acta 72, 1415–1426 (2008).

    ADS 
    MATH 

    Google Scholar
     

  • Mann, U., Frost, D. J. & Rubie, D. C. Evidence for high-pressure core–mantle differentiation from the metal–silicate partitioning of lithophile and weakly-siderophile elements. Geochim. Cosmochim. Acta 73, 7360–7386 (2009).

    ADS 

    Google Scholar
     

  • Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005).

    ADS 
    MATH 

    Google Scholar
     

  • Frossard, P., Israel, C., Bouvier, A. & Boyet, M. Earth’s composition was modified by collisional erosion. Science 377, 1529–1532 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).

    ADS 

    Google Scholar
     

  • Fang, L. et al. Half-life and initial Solar System abundance of 146Sm determined from the oldest andesitic meteorite. Proc. Natl Acad. Sci. USA 119, e2120933119 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neill, C. & Turner, S. Formation and composition of the Earth’s Hadean protocrust. Zenodo https://doi.org/10.5281/zenodo.14614029 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments