Thursday, March 20, 2025
No menu items!
HomeNatureFluctuating magnetism and Pomeranchuk effect in multilayer graphene

Fluctuating magnetism and Pomeranchuk effect in multilayer graphene

  • Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • de la Barrera, S. C. et al. Cascade of isospin phase transitions in Bernal-stacked bilayer graphene at zero magnetic field. Nat. Phys. 18, 771–775 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Seiler, A. M. et al. Quantum cascade of correlated phases in trigonally warped bilayer graphene. Nature 608, 298–302 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Han, T. et al. Orbital multiferroicity in pentalayer rhombohedral graphene. Nature 623, 41–47 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, Y. et al. Enhanced superconductivity in spin–orbit proximitized bilayer graphene. Nature 613, 268–273 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rozen, A. et al. Entropic evidence for a Pomeranchuk effect in magic-angle graphene. Nature 592, 214–219 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pomeranchuk, I. On the theory of liquid 3-He. Zh. Eksp. Teor. Fiz. 20, 919–926 (1950).

    CAS 
    MATH 

    Google Scholar
     

  • Santiago, J. M., Huang, C. L. & Morosan, E. Itinerant magnetic metals. J. Phys. Condens. Matter 29, 373002 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism (Springer, 1985).

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E. & Macdonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 26402 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Song, Z. D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 47601 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Shi, H. & Dai, X. Heavy-fermion representation for twisted bilayer graphene systems. Phys. Rev. B 106, 245129 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Hu, H. et al. Symmetric Kondo lattice states in doped strained twisted bilayer graphene. Phys. Rev. Lett. 131, 166501 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, H., Bernevig, B. A. & Tsvelik, A. M. Kondo lattice model of magic-angle twisted-bilayer graphene: Hund’s rule, local-moment fluctuations, and low-energy effective theory. Phys. Rev. Lett. 131, 26502 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Datta, A., Calderón, M. J., Camjayi, A. & Bascones, E. Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene. Nat. Commun. 14, 5036 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chou, Y. Z. & Das Sarma, S. Kondo lattice model in magic-angle twisted bilayer graphene. Phys. Rev. Lett. 131, 26501 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Lau, L. L. H. & Coleman, P. Topological mixed valence model for twisted bilayer graphene. Preprint at https://arxiv.org/abs/2303.02670 (2025).

  • Zhou, G. D., Wang, Y. J., Tong, N. & Song, Z. D. Kondo phase in twisted bilayer graphene. Phys. Rev. B 109, 45419 (2024).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ledwith, P. J., Dong, J., Vishwanath, A. & Khalaf, E. Nonlocal moments in the Chern bands of twisted bilayer graphene. Preprint at https://arxiv.org/abs/2408.16761 (2025).

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Holleis, L. et al. Nematicity and orbital depairing in superconducting Bernal bilayer graphene. Nat. Phys. https://doi.org/10.1038/s41567-024-02776-7 (2025).

  • Seiler, A. M. et al. Interaction-driven quasi-insulating ground states of gapped electron-doped bilayer graphene. Phys. Rev. Lett. 133, 066301 (2024).

  • Li, C. et al. Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene. Nature 631, 300–306 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Han, T. et al. Correlated insulator and Chern insulators in pentalayer rhombohedral-stacked graphene. Nat. Nanotechnol. 19, 181–187 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Arp, T. et al. Intervalley coherence and intrinsic spin–orbit coupling in rhombohedral trilayer graphene. Nat. Phys. 20, 1413–1420 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Xie, T. et al. Optical imaging of flavor order in flat band graphene. Preprint at https://arxiv.org/abs/2405.08074 (2024).

  • Hunt, B. M. et al. Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene. Nat. Commun. 8, 948 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fiete, G. A. Colloquium: The spin-incoherent Luttinger liquid. Rev. Mod. Phys. 79, 801–820 (2007).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Andreev, A. F. & Kosevich, Y. A. Kinetic phenomena in semiquantum liquids. Zh. Eksp. Teor. Fiz. 50, 12518–2523 (1979).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Vollhardt, D. Normal 3He: an almost localized Fermi liquid. Rev. Mod. Phys. 56, 99–120 (1984).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Davis, S. M., Chou, Y.-Z., Wu, F. & Das Sarma, S. Phonon-limited resistivity of multilayer graphene systems. Phys. Rev. B 107, 045426 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 76801 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jaoui, A. et al. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. Phys. 18, 633–638 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Gurzhi, R. Hydrodynamic effects in solids at low temperature. Sov. Phys. Usp. 11, 255 (1968).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Colvin, R. V., Legvold, S. & Spedding, F. H. Electrical resistivity of the heavy rare-earth metals. Phys. Rev. 120, 741–745 (1960).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fisher, M. E. & Langer, J. S. Resistive anomalies at magnetic critical points. Phys. Rev. Lett. 20, 665–668 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Panigrahi, A. & Levitov, L. Signatures of electronic ordering in transport in graphene flat bands. Phys. Rev. B 110, 035122 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Vafek, O. & Kang, J. Renormalization group study of hidden symmetry in twisted bilayer graphene with Coulomb interactions. Phys. Rev. Lett. 125, 257602 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Khalaf, E., Bultinck, N., Vishwanath, A. & Zaletel, M. P. Soft modes in magic angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2009.14827 (2020).

  • Kumar, A., Xie, M. & Macdonald, A. H. Lattice collective modes from a continuum model of magic-angle twisted bilayer graphene. Phys. Rev. B 104, 035119 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vituri, Y., Xiao, J., Pareek, K., Holder, T. & Berg, E. Incommensurate intervalley coherent states in ABC graphene: collective modes and superconductivity. Phys. Rev. B 111, 075103 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Wolf, T., Wei, N., Zhou, H. & Huang, C. Magnetism in the dilute electron gas of rhombohedral multilayer graphene. Preprint at https://arxiv.org/abs/2408.15884 (2024).

  • Holleis, L. et al. Source data of: Fluctuating magnetism and Pomeranchuk effect in multilayer graphene. Zenodo https://doi.org/10.5281/zenodo.14641743 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments