Boulègue, J., Benedetti, E. L., Dron, D., Mariotti, A. & Létolle, R. Geochemical and biogeochemical observations on the biological communities associated with fluid venting in Nankai Trough and Japan Trench subduction zones. Earth Planet. Sci. Lett. 83, 343–355 (1987).
Blankenship-Williams, L. E. & Levin, L. A. Living deep: a synopsis of hadal trench ecology. Mar. Technol. Soc. J. 43, 137–143 (2016).
Fujikura, K. et al. The deepest chemosynthesis-based community yet discovered from the hadal zone, 7326 m deep, in the Japan Trench. Mar. Ecol. Prog. Ser. 190, 17–26 (1999).
Ogawa, Y., Fujioka, K., Fujikura, K. & Iwabuchi, Y. En echelon patterns of Calyptogena colonies in the Japan Trench. Geology 24, 807–810 (1996).
Levin, L. A. in Oceanography and Marine Biology Vol. 43 (eds Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M) 1–46 (CRC, 2005).
Sibuet, M. & Olu, K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res. II 45, 517–567 (1998).
Aguilar Pérez, M. I., Zapata-Ramírez, P. A. & Micallef, A. A review of cold seeps in the Western Atlantic, focusing on Colombia and the Caribbean. Front. Mar. Sci. 11, 1430377 (2024).
Cordes, E. E. et al. The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Mar. Ecol. 31, 51–65 (2010).
Lonsdale, P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res. 24, 857–863 (1977).
Oliver, P. G. & Chen, C. Revision of the generic placement of two hadal bivalves (Bivalvia: Thyasiridae) from the Japan Trench, with the introduction of a new genus Tartarothyas. J. Conchol. 45, 35–50 (2024).
Hand, K. P. et al. Discovery of novel structures at 10.7 km depth in the Mariana Trench may reveal chemolithosutotrophic microbial communities. Deep Sea Res. I 160, 103238 (2020).
Davaille, A. & Lees, J. M. Thermal modeling of subducted plates: tear and hot spot at the Kamchatka corner. Geophys. Res. Lett. 27, 3663–3666 (2000).
Jamieson, A. J. & Stewart, H. A. Hadal zones of the Northwest Pacific Ocean. Prog. Oceanogr. 190, 102477 (2021).
Brandt, A., Brix, S., Riehl, T. & Malyutina, M. Biodiversity and biogeography of the abyssal and hadal Kuril–Kamchatka trench and adjacent NW Pacific deep-sea regions. Prog. Oceanogr. 181, 102232 (2020).
Kamenev, G. M. et al. Macrofauna and nematode abundance in the abyssal and hadal zones of interconnected deep-sea ecosystems in the Kuril Basin (Sea of Okhotsk) and the Kuril–Kamchatka Trench (Pacific Ocean). Front. Mar. Sci. 9, 812464 (2022).
Mironov, A. N., Krylova, E. M. & Drozdov, A. L. Specific taxonomic and trophic structure of hadal benthic communities. In Abstracts of the 9th Deep-Sea Biology Symposium (National Univ. of Ireland, 2000).
Shuntov, V. P. Biology of Far-Eastern Seas of Russia Vol. 1 (TINRO-Center, 2001).
Klaeschen, D., Belykh, I., Gnibidenko, H., Patrikeyev, S. & von Huene, R. Structure of the Kuril Trench from seismic reflection records. J. Geophys. Res. Solid Earth 99, 24173–24188 (1994).
Suess, E. et al. Fluid venting in the eastern Aleutian subduction zone. J. Geophys. Res. Solid Earth 103, 2597–2614 (1998).
Sasaki, T., Okutani, T. & Fujikura, K. Molluscs from hydrothermal vents and cold seeps in Japan: a review of taxa recorded in twenty recent years (1984–2004). Venus 64, 87–133 (2005).
Okutani, T., Fujikura, K., Watanabe, H. & Ohara, Y. Calyptogena (Abyssogena) mariana: discovery of a new vesicomyid clam from the Mariana Trench. Venus 71, 39–47 (2013).
Okumura, T. et al. Brucite chimney formation and carbonate alteration at the Shinkai SeepField, a serpentinite-hosted vent system in the southern Marianaforearc. Geochem. Geophys. Geosys. 17, 3775–3796 (2016).
Jeffrey, A. W. A., Pflaum, R. C., McDonald, T. J., Brooks, J. M. & Kvenvolden, K. A. in Initial Reports of the Deep Sea Drilling Project Leg Vol. 84 (ed. Orlofsky, S.) 719–726 (US Government Printing Office, 1985).
Kvenvolden, K. A. A review of the geochemistry of methane in natural gas hydrate. Org. Geochem. 23, 997–1008 (1995).
Schoell, M. Multiple origins of methane in the Earth. Chem. Geol. 71, 1–10 (1988).
Mayumi, D. et al. Hydrogenotrophic methanogens overwrite isotope signals of subsurface methane. Science 386, 1372–1376 (2024).
Bueno de Mesquita, J., Wu, D. & Tringe, S. G. Methyl-based methanogenesis: an ecological and genomic review. Microbiol. Mol. Biol. Rev. 87, e0002422 (2023).
Milkov, A. V. & Etiope, G. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Org. Geochem. 125, 109–120 (2018).
Joye, S. B., Bowles, M. W., Samarkin, V. A., Hunter, K. S. & Niemann, H. Biogeochemical signatures and microbial activity of different cold-seep habitats along the Gulf of Mexico deep slope. Deep Sea Res. II 57, 1990–2001 (2010).
Liu, W. et al. Pore-water dissolved inorganic carbon sources and cycling in the shallow sediments of the Haima cold seeps, South China Sea. J. Asian Earth Sci. 201, 104495 (2020).
Reitz, A. et al. Sources of fluids and gases expelled at cold seeps offshore Georgia, eastern Black Sea. Geochim. Cosmochim. Acta 75, 3250–3268 (2011).
Suess, E. et al. Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic Shelf: precursors of glendonites. Science 216, 1128–1131 (1982).
Rathburn, A. E. et al. Geological and biological heterogeneity of the Aleutian Margin (1965–4822 m). Prog. Oceanogr. 80, 22–50 (2009).
Watson, S. J. et al. Focused fluid seepage related to variations in accretionary wedge structure, Hikurangi Margin, New Zealand. Geology 48, 56–61 (2019).
Riedel, M. et al. Distributed natural gas venting offshore along the Cascadia margin. Nat. Commun. 9, 3264 (2018).
Floodgate, G. & Judd, A. G. The origins of shallow gas. Cont. Shelf Res. 12, 1145–1156 (1992).
Parkes, R. J., Cragg, B. A., Fry, J. C., Herbert, R. A. & Wimpenny, J. T. Bacterial biomass and activity in deep sediment layers from the Peru margin. Proc. R. Soc. Lond. A 391, 139–153 (1990).
Danovaro, R., Della Croce, N., Dell’Anno, A. & Pusceddu, A. A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep Sea Res. I 50, 1411–1420 (2003).
Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).
Glud, R. N. et al. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea. Commun. Earth Environ. 2, 21 (2021).
Itou, M. A large flux of particulate matter in the deep Japan Trench observed just after the 1994 Sanriku-Oki earthquake. Deep Sea Res. I 47, 1987–1998 (2000).
Hyndman, R. D. & Davis, E. E. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J. Geophys. Res. 97, 7025–7041 (1992).
Stockton, W. L. & DeLaca, T. E. Food falls in the deep sea: occurrence, quality, and significance. Deep Sea Res. A 29, 157–169 (1982).
Åström, E. K. L., Bluhm, B. A. & Rasmussen, T. L. Chemosynthetic and photosynthetic trophic support from cold seeps in Arctic benthic communities. Front. Mar. Sci. 9, 910558 (2022).
Bradley, J. A. et al. Widespread energy limitation to life in global subseafloor sediments. Sci. Adv. 6, eaba0697 (2020).
Parkes, R. J., Cragg, B. A. & Wellsbury, P. Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol. J. 8, 11–28 (2000).
Harrison, W. E. & Curiale, J. A. in Initial Reports of the Deep Sea Drilling Project Vol. 67 (eds Aubouin, J. et al.) 591–594 (US Government Printing Office, 1982).
Kvenvolden, K. A. & Kastner, M. Gas hydrates of the Peruvian outer continental margin. Proc. Ocean Drill. Prog. Sci. Results 112, 517–526 (1990).
Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015).
Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019).
Seeberg-Elverfeldt, J., Schluter, M., Feseker, T. & Kolling, M. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol. Oceanogr. Methods 3, 361–371 (2005).
Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A. & Peterson, B. J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56, 1801–1808 (1999).
Duan, Z. & Sun, R. A model to predict phase equilibrium of CH4 and CO2 clathrate hydrate in aqueous electrolyte solutions. Am. Mineral. 91, 1346–1354 (2006).
Sun, R. & Duan, Z. Prediction of CH4 and CO2 hydrate phase equilibrium and cage occupancy from ab initio intermolecular potentials. Geochim. Cosmochim. Acta 69, 4411–4424 (2005).
Sun, R. & Duan, Z. An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments. Chem. Geol. 244, 248–262 (2007).