Thursday, July 31, 2025
No menu items!
HomeNatureFlourishing chemosynthetic life at the greatest depths of hadal trenches

Flourishing chemosynthetic life at the greatest depths of hadal trenches

  • Boulègue, J., Benedetti, E. L., Dron, D., Mariotti, A. & Létolle, R. Geochemical and biogeochemical observations on the biological communities associated with fluid venting in Nankai Trough and Japan Trench subduction zones. Earth Planet. Sci. Lett. 83, 343–355 (1987).

    ADS 

    Google Scholar
     

  • Blankenship-Williams, L. E. & Levin, L. A. Living deep: a synopsis of hadal trench ecology. Mar. Technol. Soc. J. 43, 137–143 (2016).


    Google Scholar
     

  • Fujikura, K. et al. The deepest chemosynthesis-based community yet discovered from the hadal zone, 7326 m deep, in the Japan Trench. Mar. Ecol. Prog. Ser. 190, 17–26 (1999).

    ADS 

    Google Scholar
     

  • Ogawa, Y., Fujioka, K., Fujikura, K. & Iwabuchi, Y. En echelon patterns of Calyptogena colonies in the Japan Trench. Geology 24, 807–810 (1996).

    CAS 
    ADS 

    Google Scholar
     

  • Levin, L. A. in Oceanography and Marine Biology Vol. 43 (eds Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M) 1–46 (CRC, 2005).

  • Sibuet, M. & Olu, K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res. II 45, 517–567 (1998).

    ADS 

    Google Scholar
     

  • Aguilar Pérez, M. I., Zapata-Ramírez, P. A. & Micallef, A. A review of cold seeps in the Western Atlantic, focusing on Colombia and the Caribbean. Front. Mar. Sci. 11, 1430377 (2024).


    Google Scholar
     

  • Cordes, E. E. et al. The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Mar. Ecol. 31, 51–65 (2010).

    ADS 

    Google Scholar
     

  • Lonsdale, P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res. 24, 857–863 (1977).

    ADS 

    Google Scholar
     

  • Oliver, P. G. & Chen, C. Revision of the generic placement of two hadal bivalves (Bivalvia: Thyasiridae) from the Japan Trench, with the introduction of a new genus Tartarothyas. J. Conchol. 45, 35–50 (2024).


    Google Scholar
     

  • Hand, K. P. et al. Discovery of novel structures at 10.7 km depth in the Mariana Trench may reveal chemolithosutotrophic microbial communities. Deep Sea Res. I 160, 103238 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • Davaille, A. & Lees, J. M. Thermal modeling of subducted plates: tear and hot spot at the Kamchatka corner. Geophys. Res. Lett. 27, 3663–3666 (2000).

    ADS 

    Google Scholar
     

  • Jamieson, A. J. & Stewart, H. A. Hadal zones of the Northwest Pacific Ocean. Prog. Oceanogr. 190, 102477 (2021).


    Google Scholar
     

  • Brandt, A., Brix, S., Riehl, T. & Malyutina, M. Biodiversity and biogeography of the abyssal and hadal Kuril–Kamchatka trench and adjacent NW Pacific deep-sea regions. Prog. Oceanogr. 181, 102232 (2020).


    Google Scholar
     

  • Kamenev, G. M. et al. Macrofauna and nematode abundance in the abyssal and hadal zones of interconnected deep-sea ecosystems in the Kuril Basin (Sea of Okhotsk) and the Kuril–Kamchatka Trench (Pacific Ocean). Front. Mar. Sci. 9, 812464 (2022).


    Google Scholar
     

  • Mironov, A. N., Krylova, E. M. & Drozdov, A. L. Specific taxonomic and trophic structure of hadal benthic communities. In Abstracts of the 9th Deep-Sea Biology Symposium (National Univ. of Ireland, 2000).

  • Shuntov, V. P. Biology of Far-Eastern Seas of Russia Vol. 1 (TINRO-Center, 2001).

  • Klaeschen, D., Belykh, I., Gnibidenko, H., Patrikeyev, S. & von Huene, R. Structure of the Kuril Trench from seismic reflection records. J. Geophys. Res. Solid Earth 99, 24173–24188 (1994).


    Google Scholar
     

  • Suess, E. et al. Fluid venting in the eastern Aleutian subduction zone. J. Geophys. Res. Solid Earth 103, 2597–2614 (1998).

    CAS 

    Google Scholar
     

  • Sasaki, T., Okutani, T. & Fujikura, K. Molluscs from hydrothermal vents and cold seeps in Japan: a review of taxa recorded in twenty recent years (1984–2004). Venus 64, 87–133 (2005).


    Google Scholar
     

  • Okutani, T., Fujikura, K., Watanabe, H. & Ohara, Y. Calyptogena (Abyssogena) mariana: discovery of a new vesicomyid clam from the Mariana Trench. Venus 71, 39–47 (2013).


    Google Scholar
     

  • Okumura, T. et al. Brucite chimney formation and carbonate alteration at the Shinkai SeepField, a serpentinite-hosted vent system in the southern Marianaforearc. Geochem. Geophys. Geosys. 17, 3775–3796 (2016).

    ADS 

    Google Scholar
     

  • Jeffrey, A. W. A., Pflaum, R. C., McDonald, T. J., Brooks, J. M. & Kvenvolden, K. A. in Initial Reports of the Deep Sea Drilling Project Leg Vol. 84 (ed. Orlofsky, S.) 719–726 (US Government Printing Office, 1985).

  • Kvenvolden, K. A. A review of the geochemistry of methane in natural gas hydrate. Org. Geochem. 23, 997–1008 (1995).

    CAS 
    ADS 

    Google Scholar
     

  • Schoell, M. Multiple origins of methane in the Earth. Chem. Geol. 71, 1–10 (1988).

    CAS 
    ADS 

    Google Scholar
     

  • Mayumi, D. et al. Hydrogenotrophic methanogens overwrite isotope signals of subsurface methane. Science 386, 1372–1376 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Bueno de Mesquita, J., Wu, D. & Tringe, S. G. Methyl-based methanogenesis: an ecological and genomic review. Microbiol. Mol. Biol. Rev. 87, e0002422 (2023).

    PubMed 

    Google Scholar
     

  • Milkov, A. V. & Etiope, G. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Org. Geochem. 125, 109–120 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • Joye, S. B., Bowles, M. W., Samarkin, V. A., Hunter, K. S. & Niemann, H. Biogeochemical signatures and microbial activity of different cold-seep habitats along the Gulf of Mexico deep slope. Deep Sea Res. II 57, 1990–2001 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • Liu, W. et al. Pore-water dissolved inorganic carbon sources and cycling in the shallow sediments of the Haima cold seeps, South China Sea. J. Asian Earth Sci. 201, 104495 (2020).


    Google Scholar
     

  • Reitz, A. et al. Sources of fluids and gases expelled at cold seeps offshore Georgia, eastern Black Sea. Geochim. Cosmochim. Acta 75, 3250–3268 (2011).

    CAS 
    ADS 

    Google Scholar
     

  • Suess, E. et al. Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic Shelf: precursors of glendonites. Science 216, 1128–1131 (1982).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Rathburn, A. E. et al. Geological and biological heterogeneity of the Aleutian Margin (1965–4822 m). Prog. Oceanogr. 80, 22–50 (2009).

    ADS 

    Google Scholar
     

  • Watson, S. J. et al. Focused fluid seepage related to variations in accretionary wedge structure, Hikurangi Margin, New Zealand. Geology 48, 56–61 (2019).

    ADS 

    Google Scholar
     

  • Riedel, M. et al. Distributed natural gas venting offshore along the Cascadia margin. Nat. Commun. 9, 3264 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Floodgate, G. & Judd, A. G. The origins of shallow gas. Cont. Shelf Res. 12, 1145–1156 (1992).

    ADS 

    Google Scholar
     

  • Parkes, R. J., Cragg, B. A., Fry, J. C., Herbert, R. A. & Wimpenny, J. T. Bacterial biomass and activity in deep sediment layers from the Peru margin. Proc. R. Soc. Lond. A 391, 139–153 (1990).

    ADS 

    Google Scholar
     

  • Danovaro, R., Della Croce, N., Dell’Anno, A. & Pusceddu, A. A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep Sea Res. I 50, 1411–1420 (2003).

    CAS 

    Google Scholar
     

  • Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • Glud, R. N. et al. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea. Commun. Earth Environ. 2, 21 (2021).

    ADS 

    Google Scholar
     

  • Itou, M. A large flux of particulate matter in the deep Japan Trench observed just after the 1994 Sanriku-Oki earthquake. Deep Sea Res. I 47, 1987–1998 (2000).

    CAS 

    Google Scholar
     

  • Hyndman, R. D. & Davis, E. E. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J. Geophys. Res. 97, 7025–7041 (1992).

    CAS 
    ADS 

    Google Scholar
     

  • Stockton, W. L. & DeLaca, T. E. Food falls in the deep sea: occurrence, quality, and significance. Deep Sea Res. A 29, 157–169 (1982).

    ADS 

    Google Scholar
     

  • Åström, E. K. L., Bluhm, B. A. & Rasmussen, T. L. Chemosynthetic and photosynthetic trophic support from cold seeps in Arctic benthic communities. Front. Mar. Sci. 9, 910558 (2022).


    Google Scholar
     

  • Bradley, J. A. et al. Widespread energy limitation to life in global subseafloor sediments. Sci. Adv. 6, eaba0697 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Parkes, R. J., Cragg, B. A. & Wellsbury, P. Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol. J. 8, 11–28 (2000).

    ADS 

    Google Scholar
     

  • Harrison, W. E. & Curiale, J. A. in Initial Reports of the Deep Sea Drilling Project Vol. 67 (eds Aubouin, J. et al.) 591–594 (US Government Printing Office, 1982).

  • Kvenvolden, K. A. & Kastner, M. Gas hydrates of the Peruvian outer continental margin. Proc. Ocean Drill. Prog. Sci. Results 112, 517–526 (1990).


    Google Scholar
     

  • Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Seeberg-Elverfeldt, J., Schluter, M., Feseker, T. & Kolling, M. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol. Oceanogr. Methods 3, 361–371 (2005).


    Google Scholar
     

  • Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A. & Peterson, B. J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56, 1801–1808 (1999).

    CAS 

    Google Scholar
     

  • Duan, Z. & Sun, R. A model to predict phase equilibrium of CH4 and CO2 clathrate hydrate in aqueous electrolyte solutions. Am. Mineral. 91, 1346–1354 (2006).

    CAS 
    ADS 

    Google Scholar
     

  • Sun, R. & Duan, Z. Prediction of CH4 and CO2 hydrate phase equilibrium and cage occupancy from ab initio intermolecular potentials. Geochim. Cosmochim. Acta 69, 4411–4424 (2005).

    CAS 
    ADS 

    Google Scholar
     

  • Sun, R. & Duan, Z. An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments. Chem. Geol. 244, 248–262 (2007).

    CAS 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments