Sun, W. et al. Spatial transcriptomics reveal neuron–astrocyte synergy in long-term memory. Nature 627, 374–381 (2024).
Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
Chen, M. B., Jiang, X., Quake, S. R. & Südhof, T. C. Persistent transcriptional programmes are associated with remote memory. Nature 587, 437–442 (2020).
Aarts, E., Verhage, M., Veenvliet, J. V., Dolan, C. V. & van der Sluis, S. A solution to dependency: using multilevel analysis to accommodate nested data. Nat. Neurosci. 17, 491–496 (2014).
Yu, Z. et al. Beyond t test and ANOVA: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research. Neuron 110, 21–35 (2022).
Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16, 278 (2015).
Du, M. et al. ULV: a robust statistical method for clustered data, with applications to multisubject, single-cell omics data. Preprint at https://doi.org/10.48550/arXiv.2406.06767 (2024).
Sun, W. et al. Reply to: False positives in study of memory-related gene expression. Nature https://doi.org/10.1038/s41586-025-08989-x (2025).
Mukamel, E. A. Multiple comparisons and inappropriate statistical testing lead to spurious sex differences in gene expression. Biol. Psychiatry 91, e1–e2 (2022).
Mukamel, E. Reanalysis of data from Sun et al, Nature 2024. Zenodo https://doi.org/10.5281/zenodo.14635139 (2025).