Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957).
Kippenhahn, R., Weigert, A. & Weiss, A. Stellar Structure and Evolution (Springer, 2013).
Arcones, A. & Thielemann, F.-K. Origin of the elements. Astron. Astrophys. Rev. 31, 1 (2023).
Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. Ser. 101, 181 (1995).
Woosley, S. E., Heger, A. & Weaver, T. A. The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002).
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H. How massive single stars end their life. Astrophys. J. 591, 288–300 (2003).
Woosley, S. E. & Janka, H. T. The physics of core-collapse supernovae. Nat. Phys. 1, 147–154 (2005).
Müller, B. The status of multi-dimensional core-collapse supernova models. Publ. Astron. Soc. Aust. 33, e048 (2016).
Woosley, S. E. Pulsational pair-instability supernovae. Astrophys. J. 836, 244 (2017).
Crowther, P. A. Physical properties of Wolf-Rayet stars. Annu. Rev. Astron. Astrophys. 45, 177–219 (2007).
Matheson, T., Filippenko, A. V., Chornock, R., Leonard, D. C. & Li, W. Helium emission lines in the Type Ic supernova 1999CQ. Astron. J. 119, 2303–2310 (2000).
Pastorello, A. et al. A giant outburst two years before the core-collapse of a massive star. Nature 447, 829–832 (2007).
Gal-Yam, A. et al. A WC/WO star exploding within an expanding carbon–oxygen–neon nebula. Nature 601, 201–204 (2022).
Perley, D. A. et al. The Type Icn SN 2021csp: implications for the origins of the fastest supernovae and the fates of Wolf–Rayet stars. Astrophys. J. 927, 180 (2022).
Maeda, K. & Moriya, T. J. Properties of Type Ibn supernovae: implications for the progenitor evolution and the origin of a population of rapid transients. Astrophys. J. 927, 25 (2022).
Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).
Graham, M. J. et al. The Zwicky Transient Facility: science objectives. Publ. Astron. Soc. Pac. 131, 078001 (2019).
Muñoz-Arancibia, A. et al. ALeRCE/ZTF Transient Discovery Report for 2021-09-07. Report No. 2021-3075 (Transient Name Server, 2021).
Bruch, R. J. et al. The prevalence and influence of circumstellar material around hydrogen-rich supernova progenitors. Astrophys. J. 952, 119 (2023).
Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium – I. Type Ibn (SN 2006jc-like) events. Mon. Not. R. Astron. Soc. 389, 113–130 (2008).
Jacobson-Galán, W. V. et al. Final moments. II. Observational properties and physical modeling of circumstellar-material-interacting Type II supernovae. Astrophys. J. 970, 189 (2024).
Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Liu, Y.-Q., Modjaz, M., Bianco, F. B. & Graur, O. Analyzing the largest spectroscopic data set of stripped supernovae to improve their identifications and constrain their progenitors. Astrophys. J. 827, 90 (2016).
Lunnan, R. et al. PS1-14bj: a hydrogen-poor superluminous supernova with a long rise and slow decay. Astrophys. J. 831, 144 (2016).
Dessart, L., Hillier, D. J. & Kuncarayakti, H. Helium stars exploding in circumstellar material and the origin of Type Ibn supernovae. Astron. Astrophys. 658, A130 (2022).
Filippenko, A. V. Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997).
Gal-Yam, A. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 195–237 (Springer, 2017).
Gal-Yam, A., Yaron, O. & Schulze, S. Introducing a new supernova classification type: SN Ien. Transient Name Server AstroNote 2024-239 (2024).
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).
Takei, Y., Tsuna, D., Kuriyama, N., Ko, T. & Shigeyama, T. CHIPS: Complete History of Interaction-powered Supernovae. Astrophys. J. 929, 177 (2022).
Takei, Y., Tsuna, D., Ko, T. & Shigeyama, T. Simulating hydrogen-poor interaction-powered supernovae with CHIPS. Astrophys. J. 961, 67 (2024).
Fowler, W. A. & Hoyle, F. Neutrino processes and pair formation in massive stars and supernovae. Astrophys. J. Suppl. Ser. 9, 201 (1964).
Barkat, Z., Rakavy, G. & Sack, N. Dynamics of supernova explosion resulting from pair formation. Phys. Rev. Lett. 18, 379–381 (1967).
Rakavy, G., Shaviv, G. & Zinamon, Z. Carbon and oxygen burning stars and pre-supernova models. Astrophys. J. 150, 131 (1967).
Leung, S.-C., Nomoto, K. & Blinnikov, S. Pulsational pair-instability supernovae. I. Pre-collapse evolution and pulsational mass ejection. Astrophys. J. 887, 72 (2019).
Marchant, P. et al. Pulsational pair-instability supernovae in very close binaries. Astrophys. J. 882, 36 (2019).
Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science 337, 444–446 (2012).
Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).
Groh, J. H. Early-time spectra of supernovae and their precursor winds. The luminous blue variable/yellow hypergiant progenitor of SN 2013cu. Astron. Astrophys. 572, L11 (2014).
Yaron, O. et al. Confined dense circumstellar material surrounding a regular Type II supernova. Nat. Phys. 13, 510–517 (2017).
Fremling, C. et al. The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic classification and the redshift completeness of local galaxy catalogs. Astrophys. J. 895, 32 (2020).
Perley, D. A. et al. The Zwicky Transient Facility Bright Transient Survey. II. A public statistical sample for exploring supernova demographics. Astrophys. J. 904, 35 (2020).
Li, W. et al. Nearby supernova rates from the Lick Observatory Supernova Search – II. The observed luminosity functions and fractions of supernovae in a complete sample. Mon. Not. R. Astron. Soc. 412, 1441–1472 (2011).
Tonry, J. L. An early warning system for asteroid impact. Publ. Astron. Soc. Pac. 123, 58 (2011).
Smith, K. W. et al. Design and operation of the ATLAS Transient Science Server. Publ. Astron. Soc. Pac. 132, 085002 (2020).
Jones, D. O. et al. The Young Supernova Experiment: survey goals, overview, and operations. Astrophys. J. 908, 143 (2021).
Steeghs, D. et al. The Gravitational-wave Optical Transient Observer (GOTO): prototype performance and prospects for transient science. Mon. Not. R. Astron. Soc. 511, 2405–2422 (2022).
Ofek, E. O. et al. The Large Array Survey Telescope—system overview and performances. Publ. Astron. Soc. Pac. 135, 065001 (2023).
Groot, P. J. et al. The BlackGEM telescope array. I. Overview. Publ. Astron. Soc. Pac. 136, 115003 (2024).
LSST Science Collaborations et al. LSST Science Book, Version 2.0. Preprint at https://arxiv.org/abs/0912.0201 (2009).
Hogg, D. W., Baldry, I. K., Blanton, M. R. & Eisenstein, D. J. The K correction. Preprint at https://arxiv.org/abs/astro-ph/0210394 (2002).
Bruch, R. J. et al. A large fraction of hydrogen-rich supernova progenitors experience elevated mass loss shortly prior to explosion. Astrophys. J. 912, 46 (2021).
Miller, A. A. et al. ZTF early observations of Type Ia supernovae. II. First light, the initial rise, and time to reach maximum brightness. Astrophys. J. 902, 47 (2020).
Maguire, K. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 293–316 (Springer, 2017).
Arcavi, I. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 239–276 (Springer, 2017).
Gezari, S. Tidal disruption events. Annu. Rev. Astron. Astrophys. 59, 21–58 (2021).
Bond, H. E. et al. The 2008 luminous optical transient in the nearby galaxy NGC 300. Astrophys. J. Lett. 695, L154–L158 (2009).
Ho, A. Y. Q. et al. A search for extragalactic fast blue optical transients in ZTF and the rate of AT2018cow-like transients. Astrophys. J. 949, 120 (2023).
De, K. et al. The Zwicky Transient Facility census of the local universe. I. Systematic search for calcium-rich gap transients reveals three related spectroscopic subclasses. Astrophys. J. 905, 58 (2020).
Pastorello, A. et al. Luminous red novae: stellar mergers or giant eruptions? Astron. Astrophys. 630, A75 (2019).
Liu, F. T., Ting, K. M. & Zhou, Z.-H. Isolation forest. In Proc. 2008 Eighth IEEE International Conference on Data Mining 413–422 (IEEE, 2008).
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Nicholl, M. et al. SN 2015bn: a detailed multi-wavelength view of a nearby superluminous supernova. Astrophys. J. 826, 39 (2016).
Schulze, S. et al. 1100 days in the life of the supernova 2018ibb. The best pair-instability supernova candidate, to date. Astron. Astrophys. 683, A223 (2024).
Kool, E. C. et al. SN 2020bqj: a Type Ibn supernova with a long-lasting peak plateau. Astron. Astrophys. 652, A136 (2021).
Ofek, E. O. et al. SN 2010jl: optical to hard X-ray observations reveal an explosion embedded in a ten solar mass cocoon. Astrophys. J. 781, 42 (2014).
Soumagnac, M. T. et al. Early ultraviolet observations of Type IIn supernovae constrain the asphericity of their circumstellar material. Astrophys. J. 899, 51 (2020).
Matzner, C. D. & McKee, C. F. The expulsion of stellar envelopes in core-collapse supernovae. Astrophys. J. 510, 379–403 (1999).
Moriya, T. J. et al. An analytic bolometric light curve model of interaction-powered supernovae and its application to Type IIn supernovae. Mon. Not. R. Astron. Soc. 435, 1520–1535 (2013).
Owocki, S. P., Hirai, R., Podsiadlowski, P. & Schneider, F. R. N. Hydrodynamical simulations and similarity relations for eruptive mass-loss from massive stars. Mon. Not. R. Astron. Soc. 485, 988–1000 (2019).
Tsuna, D., Takei, Y., Kuriyama, N. & Shigeyama, T. An analytical density profile of dense circumstellar medium in Type II supernovae. Publ. Astron. Soc. Jpn 73, 1128–1136 (2021).
Tsuna, D. & Takei, Y. Detached and continuous circumstellar matter in Type Ibc supernovae from mass eruption. Publ. Astron. Soc. Jpn 75, L19–L25 (2023).
Magee, N. H. et al. Atomic structure calculations and new LOS Alamos astrophysical opacities. In Astrophysical Applications of Powerful New Databases, ASP Conference Series, Vol. 78 (eds Adelman, S. J. & Wiese, W. L.) 51 (Astronomical Society of the Pacific, 1995).
Suzuki, A., Moriya, T. J. & Takiwaki, T. Supernova ejecta interacting with a circumstellar disk. I. Two-dimensional radiation-hydrodynamic simulations. Astrophys. J. 887, 249 (2019).
Gal-Yam, A. A simple analysis of Type I superluminous supernova peak spectra: composition, expansion velocities, and dynamics. Astrophys. J. 882, 102 (2019).
Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database (version 5.5.6). National Institute of Standards and Technology https://physics.nist.gov/asd (2018).
Irani, I. et al. The early ultraviolet light curves of Type II supernovae and the radii of their progenitor stars. Astrophys. J. 970, 96 (2024).
Anupama, G. C. et al. Optical photometry and spectroscopy of the Type Ibn supernova SN 2006jc until the onset of dust formation. Mon. Not. R. Astron. Soc. 392, 894–903 (2009).
Foley, R. J. et al. SN 2006jc: a Wolf-Rayet star exploding in a dense He-rich circumstellar medium. Astrophys. J. Lett. 657, L105–L108 (2007).
Gal-Yam, A. The most luminous supernovae. Annu. Rev. Astron. Astrophys. 57, 305–333 (2019).
Kuncarayakti, H. et al. Late-time H/He-poor circumstellar interaction in the Type Ic supernova SN 2021ocs: an exposed oxygen–magnesium layer and extreme stripping of the progenitor. Astrophys. J. Lett. 941, L32 (2022).
Dessart, L., Hillier, D. J., Sukhbold, T., Woosley, S. E. & Janka, H. T. Nebular phase properties of supernova Ibc from He-star explosions. Astron. Astrophys. 656, A61 (2021).
Vink, J. S. Theory and diagnostics of hot star mass loss. Annu. Rev. Astron. Astrophys. 60, 203–246 (2022).
Smith, N. Mass loss: its effect on the evolution and fate of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014).
Humphreys, R. M. & Davidson, K. The luminous blue variables: astrophysical geysers. Publ. Astron. Soc. Pac. 106, 1025 (1994).
Podsiadlowski, P., Joss, P. C. & Hsu, J. J. L. Presupernova evolution in massive interacting binaries. Astrophys. J. 391, 246 (1992).
Marchant, P. & Bodensteiner, J. The evolution of massive binary stars. Annu. Rev. Astron. Astrophys. 62, 21–61 (2024).
Heger, A. & Woosley, S. E. The nucleosynthetic signature of Population III. Astrophys. J. 567, 532–543 (2002).
Umeda, H. & Nomoto, K. Nucleosynthesis of zinc and iron peak elements in Population III Type II supernovae: comparison with abundances of very metal poor halo stars. Astrophys. J. 565, 385–404 (2002).
Kasen, D., Woosley, S. E. & Heger, A. Pair instability supernovae: light curves, spectra, and shock breakout. Astrophys. J. 734, 102 (2011).
Kozyreva, A. et al. Fast evolving pair-instability supernova models: evolution, explosion, light curves. Mon. Not. R. Astron. Soc. 464, 2854–2865 (2017).
Gilmer, M. S., Kozyreva, A., Hirschi, R., Fröhlich, C. & Yusof, N. Pair-instability supernova simulations: progenitor evolution, explosion, and light curves. Astrophys. J. 846, 100 (2017).
Woosley, S. E., Blinnikov, S. & Heger, A. Pulsational pair instability as an explanation for the most luminous supernovae. Nature 450, 390–392 (2007).
Yoshida, T., Umeda, H., Maeda, K. & Ishii, T. Mass ejection by pulsational pair instability in very massive stars and implications for luminous supernovae. Mon. Not. R. Astron. Soc. 457, 351–361 (2016).
Farmer, R., Renzo, M., de Mink, S. E., Fishbach, M. & Justham, S. Constraints from gravitational-wave detections of binary black hole mergers on the 12C(α, γ)16O rate. Astrophys. J. Lett. 902, L36 (2020).
Woosley, S. E. & Heger, A. The pair-instability mass gap for black holes. Astrophys. J. Lett. 912, L31 (2021).
Farag, E., Renzo, M., Farmer, R., Chidester, M. T. & Timmes, F. X. Resolving the peak of the black hole mass spectrum. Astrophys. J. 937, 112 (2022).
Chen, K.-J., Woosley, S. E., Heger, A., Almgren, A. & Whalen, D. J. Two-dimensional simulations of pulsational pair-instability supernovae. Astrophys. J. 792, 28 (2014).
Chen, K.-J., Whalen, D. J., Woosley, S. E. & Zhang, W. Multidimensional radiation hydrodynamics simulations of pulsational pair-instability supernovae. Astrophys. J. 955, 39 (2023).
Chieffi, A. & Limongi, M. Pre-supernova evolution of rotating solar metallicity stars in the mass range 13–120 M⊙ and their explosive yields. Astrophys. J. 764, 21 (2013).
Woosley, S. E. & Heger, A. The remarkable deaths of 9–11 solar mass stars. Astrophys. J. 810, 34 (2015).
Woosley, S. E. The evolution of massive helium stars, including mass loss. Astrophys. J. 878, 49 (2019).
Woosley, S. E. & Bloom, J. S. The supernova gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006).
Hjorth, J. & Bloom, J. S. in Gamma-Ray Bursts (eds Kouveliotou, C. et al.) Ch. 9, 169–190 (Cambridge Univ. Press, 2012).
Pian, E. et al. An optical supernova associated with the X-ray flash XRF 060218. Nature 442, 1011–1013 (2006).
Starling, R. L. C. et al. Discovery of the nearby long, soft GRB 100316D with an associated supernova. Mon. Not. R. Astron. Soc. 411, 2792–2803 (2011).
Piran, T. The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 1143–1210 (2004).
Khokhlov, A. M. & Ergma, E. V. Peculiar Type I supernovae – explosive helium burning in a low-mass accreting white dwarf. Sov. Astron. Lett. 12, 152–154 (1986).
Waldman, R. et al. Helium shell detonations on low-mass white dwarfs as a possible explanation for SN 2005E. Astrophys. J. 738, 21 (2011).
Gkini, A. et al. Eruptive mass loss less than a year before the explosion of superluminous supernovae. I. The cases of SN 2020xga and SN 2022xgc. Astron. Astrophys. 694, A292 (2025).