Thursday, January 22, 2026
No menu items!
HomeNatureExtreme barocaloric effect at dissolution

Extreme barocaloric effect at dissolution

  • Constable, G. & Somerville, B. A Century of Innovation: Twenty Engineering Achievements that Transformed our Lives (John Henry Press, 2003).

  • McLinden, M. O., Brown, J. S., Brignoli, R., Kazakov, A. F. & Domanski, P. A. Limited options for low-global-warming-potential refrigerants. Nat. Commun. 8, 14476 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLinden, M. O., Seeton, C. J. & Pearson, A. New refrigerants and system configurations for vapor-compression refrigeration. Science 370, 791–796 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Velders, G. J. M., Andersen, S. O., Daniel, J. S., Fahey, D. W. & McFarland, M. The importance of the Montreal Protocol in protecting climate. Proc. Natl Acad. Sci. USA 104, 4814–4819 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takeuchi, I. & Sandeman, K. Solid-state cooling with caloric materials. Phys. Today 68, 48–54 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Fähler, S. et al. Caloric effects in ferroic materials: new concepts for cooling. Adv. Eng. Mater. 14, 10–19 (2012).

    Article 

    Google Scholar
     

  • Moya, X. & Mathur, N. D. Caloric materials for cooling and heating. Science 370, 797–803 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J., Gottschall, T., Skokov, K. P., Moore, J. D. & Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620–626 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gschneidner Jr, K. A., Pecharsky, V. K. & Tsokol, A. O. Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005).

    Article 

    Google Scholar
     

  • Ma, R. et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science 357, 1130–1134 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, D. et al. Self-oscillating polymeric refrigerator with high energy efficiency. Nature 629, 1041–1046 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, F., Jin, M., Liu, J. & Jin, X. Elastocaloric effect in Ni50Fe19Ga27Co4 single crystals. Acta Mater. 96, 292–300 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Qian, S. et al. High-performance multimode elastocaloric cooling system. Science 380, 722–727 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, R. et al. Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science 366, 216–221 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mañosa, L. et al. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat. Mater. 9, 478–481 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Materials with barocaloric effect for solid-state refrigeration. J. Mater. Chem. A 13, 6152–6175 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Mañosa, L. et al. Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound. Nat. Commun. 2, 595 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Li, B. et al. Colossal barocaloric effects in plastic crystals. Nature 567, 506–510 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piper, S. et al. Organic ionic plastic crystals having colossal barocaloric effects for sustainable refrigeration. Science 387, 56–62 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, K. et al. Colossal barocaloric effect in carboranes as a performance tradeoff. Adv. Funct. Mater. 32, 2112622 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ohkoshi, S. et al. Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid. Nat. Commun. 14, 8466 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Y. et al. Low pressure reversibly driving colossal barocaloric effect in two-dimensional vdW alkylammonium halides. Nat. Commun. 15, 1838 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seo, J. et al. Colossal barocaloric effects with ultralow hysteresis in two-dimensional metal–halide perovskites. Nat. Commun. 13, 2536 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, Q. et al. Ultrasensitive barocaloric material for room-temperature solid-state refrigeration. Nat. Commun. 13, 2293 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lünser, K. et al. Elastocaloric, barocaloric and magnetocaloric effects in spin crossover polymer composite films. Nat. Commun. 15, 6171 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Ben, J. et al. Discovery of colossal breathing-caloric effect under low applied pressure in the hybrid organic–inorganic MIL-53 (Al) material. Chem. Mater. 34, 3323–3332 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, J. et al. Colossal and reversible barocaloric effect in liquid-solid-transition materials n-alkanes. Nat. Commun. 13, 596 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lilley, D. & Prasher, R. Ionocaloric refrigeration cycle. Science 378, 1344–1348 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Metzdorf, J. et al. Electrocaloric cooling system utilizing latent heat transfer for high power density. Commun. Eng. 3, 55 (2024).

    Article 
    PubMed Central 

    Google Scholar
     

  • Qian, K. et al. Highly efficient mechanocaloric cooling using colossal barocaloric plastic crystals. Cell Rep. Phys. Sci. 5, 101981 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Han, H. et al. Controlled dissolution of a single ion from a salt interface. Nat. Commun. 15, 2401 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majedi, S., Sreerama, L., Vessally, E. & Behmagham, F. Metal-free regioselective thiocyanation of (hetero) aromatic CH bonds using ammonium thiocyanate: an overview. J. Chem. Lett. 1, 25–31 (2020).


    Google Scholar
     

  • Zhang, Z. et al. Thermal batteries based on inverse barocaloric effects. Sci. Adv. 9, e0374 (2023).

    Article 

    Google Scholar
     

  • Pecharsky, V. K. & Gschneidner Jr, K. A. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Neese, B. et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821–823 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cong, D. et al. Colossal elastocaloric effect in ferroelastic Ni–Mn–Ti alloys. Phys. Rev. Lett. 122, 255703 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. High-frequency bending-actuated elastocaloric cooler with enhanced cooling performance. Cell Rep. Phys. Sci. 6, 102669 (2025).

    Article 

    Google Scholar
     

  • Gonnissen, D., Langenaeker, W., Hubin, A. & Geerlings, P. A (surface-enhanced) Raman spectroscopic study of the adsorption of S2O and SCN on a silver deposit. J. Raman Spectrosc. 29, 1031–1039 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Jarv, T., Bulmer, J. T. & Irish, D. E. An investigation of the digitized Raman band profiles of aqueous indium (III) chloride solutions. J. Phys. Chem. 81, 649–656 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Dong, J. et al. Raman observation of the interactions between NH4+, SO42−, and H2O in supersaturated (NH4)2SO4 droplets. J. Phys. Chem. B 111, 12170–12176 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carey, D. M. & Korenowski, G. M. Measurement of the Raman spectrum of liquid water. J. Chem. Phys. 108, 2669–2675 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Tewari, G. D., Khandelwal, D. P. & Bist, H. D. Raman scattering study of phase transitions in NH4SCN. J. Chem. Phys. 82, 5624–5632 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Local atomic structures and lattice dynamics of inverse colossal barocaloric ammonium thiocyanate. Phys. Rev. Mater. 7, 125402 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Adams, D. M. & Pogson, M. Vibrational spectroscopy at high pressures. Part 50. A Raman scattering study of MSCN (M = K, Rb, Cs, NH4) at high pressures. J. Raman Spectrosc. 19, 321–327 (1988).

    Article 
    CAS 

    Google Scholar
     

  • AHRI 210/240: Performance Rating of Water-Chilling and Heat Pump Water-Heating Packages Using the Vapor Compression Cycle (Air-Conditioning, Heating, and Refrigeration Institute, 2023).

  • Srinivasan, K. V., Manimaran, A., Arulprakasajothi, M., Revanth, M. & Arolkar, V. A. Design and development of porous regenerator for Stirling cryocooler using additive manufacturing. Therm. Sci. Eng. Prog. 11, 195–203 (2019).

    Article 

    Google Scholar
     

  • Bom, N. M., Usuda, E. O., Guimarães, G. M., Coelho, A. A. & Carvalho, A. M. G. Experimental setup for measuring the barocaloric effect in polymers: application to natural rubber. Rev. Sci. Instrum. 88, 046103 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moia, M.A.Y. et al. Device for direct barocaloric measurement. Int. J. Thermophys. 46, 38 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Kawaguchi, S. et al. High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev. Sci. Instrum. 88, 085111 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X., Wang, X., Wang, Y., Li, K. & Zheng, H. From molecules to carbon materials—high pressure induced polymerization and bonding mechanisms of unsaturated compounds. Crystals 9, 490 (2019).

    Article 

    Google Scholar
     

  • Su, L., Shi, K., Zhang, L., Wang, Y. & Yang, G. Static and dynamic diamond anvil cell (s-dDAC): a bidirectional remote controlled device for static and dynamic compression/decompression. Matter Radiat. Extremes 7, 018401 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chang, B. et al. On the pressure dependence of salty aqueous eutectics. Cell Rep. Phys. Sci. 3, 100856 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, S. et al. Colossal electrocaloric effect in an interface-augmented ferroelectric polymer. Science 382, 1020–1026 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, H. et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science 366, 1116–1121 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, H., Qian, S. & Takeuchi, I. Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments