Wednesday, February 12, 2025
No menu items!
HomeNatureExternal Li supply reshapes Li deficiency and lifetime limit of batteries

External Li supply reshapes Li deficiency and lifetime limit of batteries

  • Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fichtner, M. et al. Rechargeable batteries of the future—the state of the art from a BATTERY 2030+ perspective. Adv. Energy Mater. 12, 2102904 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotech. 12, 194–206 (2017).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • He, J. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, X. et al. Hydrogen isotope effects: a new path to high-energy aqueous rechargeable Li/Na-ion batteries. eScience 3, 100121 (2023).

    Article 

    Google Scholar
     

  • Chen, H. et al. Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy 6, 790–798 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zhao, J. et al. Artificial solid electrolyte interphase-protected LixSi nanoparticles: an efficient and stable prelithiation reagent for lithium-ion batteries. J. Am. Chem. Soc. 137, 8372–8375 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bärmann, P. et al. Mechanistic insights into the pre-lithiation of silicon/graphite negative electrodes in “dry state” and after electrolyte addition using passivated lithium metal powder. Adv. Energy Mater. 11, 2100925 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Palanisamy, M., Parekh, M. H. & Pol, V. G. In situ replenishment of formation cycle lithium-ion loss for enhancing battery life. Adv. Funct. Mater. 30, 2003668 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Choi, J. et al. Weakly solvating solution enables chemical prelithiation of graphite-SiOx anodes for high-energy Li-ion batteries. J. Am. Chem. Soc. 143, 9169–9176 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yang, C. et al. Roll-to-roll prelithiation of lithium-ion battery anodes by transfer printing. Nat. Energy 8, 703–713 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Wang, L. et al. Li-free cathode materials for high energy density lithium batteries. Joule 3, 2086–2102 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Hua, X. et al. Revisiting metal fluorides as lithium-ion battery cathodes. Nat. Mater. 20, 841–850 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Poizot, P. et al. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120, 6490–6557 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, J., Yang, J., Xie, J. & Xu, N. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 14, 963–965 (2002).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Kim, J. H. et al. Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage. J. Power Sources 229, 190–197 (2013).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Cao, W., Li, J. & Wu, Z. Cycle-life and degradation mechanism of LiFePO4-based lithium-ion batteries at room and elevated temperatures. Ionics 22, 1791–1799 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Shanmukaraj, D. et al. Sacrificial salts: compensating the initial charge irreversibility in lithium batteries. Electrochem. Commun. 12, 1344–1347 (2010).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Jezowski, P. et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat. Mater. 17, 167–173 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. High-capacity battery cathode prelithiation to offset initial lithium loss. Nat. Energy 1, 15008 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, Y. et al. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 6, 653–662 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Jun, K. J. et al. Understanding the irreversible reaction pathway of the sacrificial cathode additive Li6CoO4. Adv. Energy Mater. 13, 2301132 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Meng, Q. et al. A functional prelithiation separator promises sustainable high-energy lithium-ion batteries. Adv. Energy Mater. 13, 2300507 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Dose, W. M. et al. Liquid ammonia chemical lithiation: an approach for high-energy and high-voltage Si-graphite|Li1+ xNi0.5Mn1.5O4 Li-ion batteries. ACS Appl. Energy Mater. 2, 5019–5028 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Wang, Z. et al. Unsupervised discovery of thin-film photovoltaic materials from unlabeled data. npj Comput. Mater. 7, 128 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Tao, K. et al. Rapid discovery of inorganic-organic solid composite electrolytes by unsupervised learning. Chem. Eng. J. 454, 140151 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Carter, H. A., Wang, Shiow-Chyn, C. & Shreeve, J. M. The Raman spectra of CF3SCF3, CF3S(O)CF3 and CF3SSCF3. Spectrochim. Acta A Mol. Spectrosc. 29, 1479–1491 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Insights for understanding multiscale degradation of LiFePO4 cathodes. eScience 2, 125–137 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Haegyeom, K. & Jae, C. K. Opportunities and challenges in cathode development for non-lithium-ion batteries. eScience 4, 100232 (2024).

    Article 

    Google Scholar
     

  • Aldo, G. et al. Unsupervised learning methods for molecular simulation data. Chem. Rev. 121, 9722–9758 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Zhang, Y. et al. Unsupervised discovery of solid-state lithium ion conductors. Nat. Commun. 10, 5260 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, K. et al. Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries. Nat. Commun. 14, 2789 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Merrick, J. P., Moran, D. & Radom, L. An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A 111, 11683–11700 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Goerigk, L. & Grimme, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 13, 6670–6688 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Holoubek, J. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lu, C. et al. High-performance fibre battery with polymer gel electrolyte. Nature 629, 86–91 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments