Thursday, January 23, 2025
No menu items!
HomeNatureExtended quantum anomalous Hall states in graphene/hBN moiré superlattices

Extended quantum anomalous Hall states in graphene/hBN moiré superlattices

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dong, Z., Patri, A. S. & Senthil, T. Theory of quantum anomalous Hall phases in pentalayer rhombohedral graphene moiré structures. Phys. Rev. Lett. 133, 206502 (2024).

  • Zhou, B., Yang, H. & Zhang, Y.-H. Fractional quantum anomalous Hall effects in rhombohedral multilayer graphene in the moiréless limit and in Coulomb imprinted superlattice. Phys. Rev. Lett. 133, 206504 (2024).

  • Dong, J. et al. Anomalous Hall crystals in rhombohedral multilayer graphene I: Interaction-driven Chern bands and fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 133, 206503 (2024).

  • Guo, Z., Lu, X., Xie, B. & Liu, J. Theory of fractional Chern insulator states in pentalayer graphene moiré superlattice. Phys. Rev. B 110, 075109 (2023).

    Article 

    Google Scholar
     

  • Kwan, Y. H. et al. Moiré fractional Chern insulators III: Hartree-Fock phase diagram, magic angle regime for Chern insulator states, the role of the moiré potential and Goldstone gaps in rhombohedral graphene superlattices. Preprint at https://arxiv.org/abs/2312.11617 (2023).

  • Seiler, A. M. et al. Quantum cascade of correlated phases in trigonally warped bilayer graphene. Nature 608, 298–302 (2022).

  • Halperin, B. I., Tešanović, Z. & Axel, F. Compatibility of crystalline order and the quantized Hall effect. Phys. Rev. Lett. 57, 922 (1986).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tešanović, Z., Axel, F. & Halperin, B. I. “Hall crystal” versus Wigner crystal. Phys. Rev. B 39, 8525–8551 (1989).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kivelson, S., Kallin, C., Arovas, D. P. & Schrieffer, J. R. Cooperative ring exchange and the fractional quantum Hall effect. Phys. Rev. B 36, 1620–1646 (1987).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Zeng, Y., Guerci, D., Crépel, V., Millis, A. J. & Cano, J. Sublattice structure and topology in spontaneously crystallized electronic states. Phys. Rev. Lett. 132, 236601 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Soejima, T. et al. Anomalous Hall crystals in rhombohedral multilayer graphene. II: General mechanism and a minimal model. Phys. Rev. B 110, 205124 (2024).

  • Dong, Z., Patri, A. S. & Senthil, T. Stability of anomalous Hall crystals in multilayer rhombohedral graphene. Phys. Rev. B 110, 205130 (2024).

  • Tan, T. & Devakul, T. Parent Berry curvature and the ideal anomalous Hall crystal. Phys. Rev. X 14, 041040 (2024).

  • Sheng, D. N., Reddy, A. P., Abouelkomsan, A., Bergholtz, E. J. & Fu, L. Quantum anomalous Hall crystal at fractional filling of moiré superlattices. Phys. Rev. Lett. 133, 66601 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Eisenstein, J. P. & Stormer, H. L. The fractional quantum Hall effect. Science 248, 1510–1516 (1990).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kivelson, S., Lee, D.-H. & Zhang, S.-C. Global phase diagram in the quantum Hall effect. Phys. Rev. B 46, 2223–2238 (1992).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys Rev X 13, 31037 (2023).

    CAS 

    Google Scholar
     

  • Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Komiyama, S. & Kawaguchi, Y. Heat instability of quantum Hall conductors. Phys. Rev. B 61, 2014–2027 (2000).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Fox, E. J. et al. Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect. Phys. Rev. B 98, 75145 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kawamura, M. et al. Current-driven instability of the quantum anomalous Hall effect in ferromagnetic topological insulators. Phys. Rev. Lett. 119, 16803 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Eber, G., von Klitzing, K., Ploog, K. & Weinmann, G. Two-dimensional magneto-quantum transport on GaAs-AlxGa1-xAs heterostructures under non-ohmic conditions. J. Phys. C: Solid State Phys. 16, 5441 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Song, X.-Y., Jian, C.-M., Fu, L. & Xu, C. Intertwined fractional quantum anomalous Hall states and charge density waves. Phys. Rev. B 109, 115116 (2024).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xia, J. S. et al. Electron correlation in the second Landau level: a competition between many nearly degenerate quantum phases. Phys. Rev. Lett. 93, 176809 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Observation of reentrant integer quantum Hall states in the lowest Landau level. Phys. Rev. Lett. 109, 36801 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Eisenstein, J. P., Cooper, K. B., Pfeiffer, L. N. & West, K. W. Insulating and fractional quantum Hall states in the first excited Landau level. Phys. Rev. Lett. 88, 76801 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Deng, N. et al. Collective nature of the reentrant integer quantum Hall states in the second Landau level. Phys. Rev. Lett. 108, 86803 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, S. et al. Competing fractional quantum Hall and electron solid phases in graphene. Phys. Rev. Lett. 122, 26802 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, H., Polshyn, H., Taniguchi, T., Watanabe, K. & Young, A. F. Solids of quantum Hall skyrmions in graphene. Nat. Phys. 16, 154–158 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Kumar, A., Csáthy, G. A., Manfra, M. J., Pfeiffer, L. N. & West, K. W. Nonconventional odd-denominator fractional quantum Hall states in the second Landau level. Phys. Rev. Lett. 105, 246808 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pan, W. et al. Transition from an electron solid to the sequence of fractional quantum Hall states at very low Landau level filling factor. Phys. Rev. Lett. 88, 176802 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, P. K. & Girvin, S. M. Liquid-solid transition and the fractional quantum-Hall effect. Phys. Rev. B 30, 473–475 (1984).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Levesque, D., Weis, J. J. & MacDonald, A. H. Crystallization of the incompressible quantum-fluid state of a two-dimensional electron gas in a strong magnetic field. Phys. Rev. B 30, 1056–1058 (1984).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Falson, J. et al. Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions. Nat. Mater. 21, 311–316 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xiang, Z. et al. Quantum melting of a disordered Wigner solid. Preprint at https://arxiv.org/abs/2402.05456 (2024).

  • Grimes, C. C. & Adams, G. Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons. Phys. Rev. Lett. 42, 795–798 (1979).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Andrei, E. Y. et al. Observation of a magnetically induced Wigner solid. Phys. Rev. Lett. 60, 2765–2768 (1988).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jiang, H. W. et al. Quantum liquid versus electron solid around v=1/5 Landau-level filling. Phys. Rev. Lett. 65, 633–636 (1990).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Santos, M. B. et al. Observation of a reentrant insulating phase near the 1/3 fractional quantum Hall liquid in a two-dimensional hole system. Phys. Rev. Lett. 68, 1188–1191 (1992).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tsui, Y.-C. et al. Direct observation of a magnetic-field-induced Wigner crystal. Nature 628, 287–292 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kakiuchi, T., Wakabayashi, Y., Sawa, H., Itou, T. & Kanoda, K. Wigner crystallization in (DI − DCNQI)2 Ag detected by synchrotron radiation X-ray diffraction. Phys. Rev. Lett. 98, 66402 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cooper, K. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Observation of narrow-band noise accompanying the breakdown of insulating states in high Landau levels. Phys. Rev. Lett. 90, 226803 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. P. et al. Evidence for two different solid phases of two-dimensional electrons in high magnetic fields. Phys. Rev. Lett. 93, 206805 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Madathil, P. T. et al. Moving crystal phases of a quantum Wigner solid in an ultra-high-quality 2D electron system. Phys. Rev. Lett. 131, 236501 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lui, C. H. et al. Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yan, J.-A., Ruan, W. Y. & Chou, M. Y. Enhanced optical conductivity induced by surface states in ABC-stacked few-layer graphene. Phys. Rev. B 83, 245418 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Han, T. et al. Large quantum anomalous Hall effect in spin-orbit proximitized rhombohedral graphene. Science 384, 647–651 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Han, T. et al. Orbital multiferroicity in pentalayer rhombohedral graphene. Nature 623, 41–47 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Han, T. et al. Correlated insulator and Chern insulators in pentalayer rhombohedral-stacked graphene. Nat. Nanotechnol. 19, 181–187 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, K. et al. Spontaneous broken-symmetry insulator and metals in tetralayer rhombohedral graphene. Nat. Nanotechnol. 19, 188–195 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xie, J. et al. Even- and odd-denominator fractional quantum anomalous Hall effect in graphene moire superlattices. Preprint at https://arxiv.org/abs/2405.16944 (2024).

  • Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sha, Y. et al. Observation of a Chern insulator in crystalline ABCA-tetralayer graphene with spin-orbit coupling. Science 384, 414–419 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, F., Sahu, B., Min, H. & MacDonald, A. H. Band structure of ABC-stacked graphene trilayers. Phys. Rev. B 82, 35409 (2010).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Koshino, M. & McCann, E. Gate-induced interlayer asymmetry in ABA-stacked trilayer graphene. Phys. Rev. B 79, 125443 (2009).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Zou, K., Zhang, F., Clapp, C., MacDonald, A. H. & Zhu, J. Transport studies of dual-gated ABC and ABA trilayer graphene: band gap opening and band structure tuning in very large perpendicular electric fields. Nano Lett. 13, 369–373 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L., Zhang, Y., Camacho, J., Khodas, M. & Zaliznyak, I. The experimental observation of quantum Hall effect of l = 3 chiral quasiparticles in trilayer graphene. Nat. Phys. 7, 953–957 (2011).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Lee, Y. et al. Competition between spontaneous symmetry breaking and single-particle gaps in trilayer graphene. Nat. Commun. 5, 5656 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Myhro, K. et al. Large tunable intrinsic gap in rhombohedral-stacked tetralayer graphene at half filling. 2D Mater. 5, 045013 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zhou, W. et al. Layer-polarized ferromagnetism in rhombohedral multilayer graphene. Nat. Commun. 15, 2597 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ding, J. et al. Electrical switching of chirality in rhombohedral graphene Chern insulators. Preprint at https://arxiv.org/abs/2406.14289 (2024).

  • Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments