Blatt, J. M., Böer, K. W. & Brandt, W. Bose-Einstein condensation of excitons. Phys. Rev. 126, 1691–1692 (1962).
Lozovik, Y. E. & Yudson, V. I. Feasibility of superfluidity of paired spatially separated electrons and holes; a new superconductivity mechanism. JETP Lett. 22, 274–276 (1975).
Li, J. I. A. et al. Pairing states of composite fermions in double-layer graphene. Nat. Phys. 15, 898–903 (2019).
Liu, X. et al. Interlayer fractional quantum Hall effect in a coupled graphene double layer. Nat. Phys. 15, 893–897 (2019).
Laughlin, R. Excitons in the fractional quantum Hall effect. Physica B+C 126, 254–259 (1984).
Wen, X.-G. & Zee, A. Neutral superfluid modes and “magnetic” monopoles in multilayered quantum Hall systems. Phys. Rev. Lett. 69, 1811–1814 (1992).
Kamilla, R. K. & Jain, J. K. Excitonic instability and termination of fractional quantum Hall effect. Phys. Rev. B 55, R13417–R13420 (1997).
Yang, J. Quasiexcitons in the fractional quantum Hall effect. Phys. Rev. B 49, 5443–5447 (1994).
Park, K. & Jain, J. K. Two-roton bound state in the fractional quantum Hall effect. Phys. Rev. Lett. 84, 5576–5579 (2000).
Park, K. Charged excitons of composite fermions in the fractional quantum Hall effect. Solid State Commun. 121, 19–23 (2001).
Jain, J. K., Park, K., Peterson, M. R. & Scarola, V. W. Composite fermion theory of excitations in the fractional quantum Hall effect. Solid State Commun. 135, 602–609 (2005).
Quinn, J. J., Wójs, A. & Gładysiewicz, A. Fractional quasiexcitons in incompressible electron liquids. Physica E 34, 280–283 (2006).
Barkeshli, M., Nayak, C., Papić, Z., Young, A. & Zaletel, M. Topological exciton Fermi surfaces in two-component fractional quantized Hall insulators. Phys. Rev. Lett. 121, 026603 (2018).
Zhang, Y.-H., Zhu, Z. & Vishwanath, A. XY* transition and extraordinary boundary criticality from fractional exciton condensation in quantum Hall bilayer. Phys. Rev. X 13, 031023 (2023).
Kwan, Y. H., Hu, Y., Simon, S. H. & Parameswaran, S. A. Excitonic fractional quantum Hall hierarchy in moiré heterostructures. Phys. Rev. B 105, 235121 (2022).
Faugno, W. N., Balram, A. C., Wójs, A. & Jain, J. K. Theoretical phase diagram of two-component composite fermions in double-layer graphene. Phys. Rev. B 101, 085412 (2020).
Feldman, D. E. & Halperin, B. I. Fractional charge and fractional statistics in the quantum Hall effects. Rep. Prog. Phys. 84, 076501 (2021).
Halperin, B. I. Theory of the quantized Hall conductance. Helv. Phys. Acta 56, 75–102 (1983).
Yang, K. et al. Quantum ferromagnetism and phase transitions in double-layer quantum Hall systems. Phys. Rev. Lett. 72, 732–735 (1994).
Moon, K. et al. Spontaneous interlayer coherence in double-layer quantum Hall systems: Charged vortices and Kosterlitz-Thouless phase transitions. Phys. Rev. B 51, 5138–5170 (1995).
Girvin, S. & MacDonald, A. Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor Structures (eds Sarma, S. D. & Pinczuk, A.) 161–224 (Wiley, 1996).
Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).
Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).
Liu, X., Taniguchi, T., Watanabe, K., Halperin, B. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).
Liu, X. et al. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 375, 205–209 (2022).
Jain, J. K. Composite Fermions (Cambridge Univ. Press, 2003).
Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect coulomb drag. Nature 488, 481–484 (2012).
Zeng, Y. et al. High-quality magnetotransport in graphene using the edge-free Corbino geometry. Phys. Rev. Lett. 122, 137701 (2019).
Polshyn, H. et al. Quantitative transport measurements of fractional quantum Hall energy gaps in edgeless graphene devices. Phys. Rev. Lett. 121, 226801 (2018).
Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system. Phys. Rev. Lett. 93, 036801 (2004).
Tutuc, E., Shayegan, M. & Huse, D. A. Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing. Phys. Rev. Lett. 93, 036802 (2004).
Zeng, Y. et al. Evidence for a superfluid-to-solid transition of bilayer excitons. Preprint at arxiv.org/abs/2306.16995 (2023).
Jain, J. K. Composite fermion theory of exotic fractional quantum Hall effect. Annu. Rev. Condens. Matter Phys. 6, 39–62 (2015).
Eisenstein, J. & Stormer, H. The fractional quantum Hall effect. Science 248, 1510–1516 (1990).
Scarola, V. W. & Jain, J. K. Phase diagram of bilayer composite fermion states. Phys. Rev. B 64, 085313 (2001).
Huse, D. A. Resistance due to vortex motion in the ν = 1 bilayer quantum Hall superfluid. Phys. Rev. B 72, 064514 (2005).
Kellogg, M. J. Evidence for Excitonic Superfluidity in a Bilayer Two-Dimensional Electron System. PhD thesis (California Institute of Technology, 2005).
Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 6, 1181–1203 (1973).
Berezinskiĭ, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. Sov. Phys. JETP 34, 610–616 (1972).
Wen, X.-G.Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, 2004).
Heiblum, M. & Feldman, D. E. Edge probes of topological order. Int. J. Mod. Phys. A 35, 2030009 (2020).
Bid, A. et al. Observation of neutral modes in the fractional quantum Hall regime. Nature 466, 585–590 (2010).
Takei, S., Halperin, B. I., Yacoby, A. & Tserkovnyak, Y. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B 90, 094408 (2014).
Takei, S., Yacoby, A., Halperin, B. I. & Tserkovnyak, Y. Spin Superfluidity in the ν = 0 quantum Hall state of graphene. Phys. Rev. Lett. 116, 216801 (2016).
Wei, D. S. et al. Electrical generation and detection of spin waves in a quantum Hall ferromagnet. Science 362, 229–233 (2018).
Zhou, H. et al. Strong-magnetic-field magnon transport in monolayer graphene. Phys. Rev. X 12, 021060 (2022).
Eisenstein, J. P., Stormer, H. L., Pfeiffer, L. & West, K. W. Evidence for a phase transition in the fractional quantum Hall effect. Phys. Rev. Lett. 62, 1540–1543 (1989).
Eisenstein, J. P., Stormer, H. L., Pfeiffer, L. N. & West, K. W. Evidence for a spin transition in the ν = 2/3 fractional quantum Hall effect. Phys. Rev. B 41, 7910 (1990).
Engel, L. W., Hwang, S. W., Sajoto, T., Tsui, D. C. & Shayegan, M. Fractional quantum Hall effect at ν = 2/3 and 3/5 in tilted magnetic fields. Phys. Rev. B 45, 3418–3425 (1992).