Thursday, February 27, 2025
No menu items!
HomeNatureEvolutionary lability of a key innovation spurs rapid diversification

Evolutionary lability of a key innovation spurs rapid diversification

  • Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Roelants, K. et al. Global patterns of diversification in the history of modern amphibians. Proc. Natl Acad. Sci. USA 104, 887–892 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Miller, A. H., Stroud, J. T. & Losos, J. B. The ecology and evolution of key innovations. Trends Ecol. Evol. 38, 122–131 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Lovette, I. J., Bermingham, E. & Ricklefs, R. E. Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proc. R. Soc. Lond. B 269, 37–42 (2002).

    Article 

    Google Scholar
     

  • Martin, C. H. & Wainwright, P. C. Trophic novelty is linked to exceptional rates of morphological diversification in two adaptive radiations of Cyprinodon pupfish. Evolution 65, 2197–2212 (2011).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • De Alencar, L. R. V., Martins, M., Burin, G. & Quental, T. B. Arboreality constrains morphological evolution but not species diversification in vipers. Proc. R. Soc. B 284, 20171775 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Burns, M. D. & Bloom, D. D. Migratory lineages rapidly evolve larger body sizes than non-migratory relatives in ray-finned fishes. Proc. R. Soc. B 287, 20192615 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter, J. P. & Jernvall, J. The hypocone as a key innovation in mammalian evolution. Proc. Natl Acad. Sci. USA 92, 10718–10722 (1995).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lafuma, F., Corfe, I. J., Clavel, J. & Di-Poï, N. Multiple evolutionary origins and losses of tooth complexity in squamates. Nat. Commun. 12, 6001 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Luo, Z.-X. Transformation and diversification in early mammal evolution. Nature 450, 1011–1019 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ricklefs, R. E. Global variation in the diversification rate of passerine birds. Ecology 87, 2468–2478 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Liem, K. F. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Zool. 22, 425–441 (1973).

    Article 
    MATH 

    Google Scholar
     

  • Hunter, J. P. Key innovations and the ecology of macroevolution. Trends Ecol. Evol. 13, 31–36 (1998).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rabosky, D. L. Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. Phil. Trans. R. Soc. B 372, 20160417 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, A. H. Ornithologie als Biologische Wissenschaft (Mayr, E. & Schuz, E., eds.) 84–88 (Carl Winter, 1949).

  • Title, P. O. et al. The macroevolutionary singularity of snakes. Science 383, 918–923 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).

  • Carroll, S. B. Chance and necessity: the evolution of morphological complexity and diversity. Nature 409, 1102–1109 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jackman, W. R. et al. Manipulation of Fgf and Bmp signaling in teleost fishes suggests potential pathways for the evolutionary origin of multicuspid teeth. Evol. Devel. 15, 107–118 (2013).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Wainwright, P. C. & Longo, S. J. Functional innovations and the conquest of the oceans by acanthomorph fishes. Curr. Biol. 27, R550–R557 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wainwright, P. C., McGee, M. D., Longo, S. J. & Hernandez, L. P. Origins, innovations, and diversification of suction feeding in vertebrates. Integr. Comp. Biol. 55, 134–145 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Tebbett, S. B., Goatley, C. H. R. & Bellwood, D. R. Clarifying functional roles: algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscus. Coral Reefs 36, 803–813 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Berkovitz, B. & Shellis, P. The Teeth of Non-Mammalian Vertebrates (Academic, 2017).

  • Seehausen, O. & Wagner, C. E. Speciation in freshwater fishes. Annu. Rev. Ecol. Evol. Syst. 45, 621–651 (2014).

    Article 

    Google Scholar
     

  • Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yamanaka, A. Evolution and development of the mammalian multicuspid teeth. J. Oral Biosci. 64, 165–175 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Melo, B. F. et al. Accelerated diversification explains the exceptional species richness of tropical characoid fishes. Syst. Biol. 71, 78–92 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • McGee, M. D. et al. The ecological and genomic basis of explosive adaptive radiation. Nature 586, 75–79 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pigliucci, M. Is evolvability evolvable? Nat. Rev. Genet. 9, 75–82 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Davis, M. P., Midford, P. E. & Maddison, W. Exploring power and parameter estimation of the BiSSE method for analyzing species diversification. BMC Evol. Biol. 13, 38 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Salzburger, W., Mack, T., Verheyen, E. & Meyer, A. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol. Biol. 5, 17 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronco, F. et al. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature 589, 76–81 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Meier, J. I. et al. Cycles of fusion and fission enabled rapid parallel adaptive radiations in African cichlids. Science 381, eade2833 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seehausen, O. African cichlid fish: a model system in adaptive radiation research. Proc. R. Soc. B 273, 1987–1998 (2006).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Greenwood, P. H. The Haplochromine Fishes of East African Lakes: Taxonomy, Biology and Evolution (Kraus, 1981).

  • Crofts, S. B., Smith, S. M. & Anderson, P. S. L. Beyond description: the many facets of dental biomechanics. Integr. Comp. Biol. 60, 594–607 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ivory, S. J. et al. Environmental change explains cichlid adaptive radiation at Lake Malawi over the past 1.2 million years. Proc. Natl Acad. Sci. USA 113, 11895–11900 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyons, R. P. et al. Continuous 1.3-million-year record of East African hydroclimate, and implications for patterns of evolution and biodiversity. Proc. Natl Acad. Sci. USA 112, 15568–15573 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Henao Diaz, L. F., Harmon, L. J., Sugawara, M. T. C., Miller, E. T. & Pennell, M. W. Macroevolutionary diversification rates show time dependency. Proc. Natl Acad. Sci. USA 116, 7403–7408 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mihalitsis, M. & Bellwood, D. R. Functional groups in piscivorous fishes. Ecol. Evol. 11, 12765–12778 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magalhaes, I. S., Lundsgaard-Hansen, B., Mwaiko, S. & Seehausen, O. Evolutionary divergence in replicate pairs of ecotypes of Lake Victoria cichlid fish. Evol. Ecol. Res. 14, 381–401 (2012).


    Google Scholar
     

  • Corn, K. A. et al. The rise of biting during the Cenozoic fueled reef fish body shape diversification. Proc. Natl Acad. Sci. USA 119, e2119828119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Price, S. A., Hopkins, S. S. B., Smith, K. K. & Roth, V. L. Tempo of trophic evolution and its impact on mammalian diversification. Proc. Natl Acad. Sci. USA 109, 7008–7012 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Albertson, R. C. Genetic basis of adaptive shape differences in the cichlid head. J. Hered. 94, 291–301 (2003).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Duenser, A. et al. Developmental tinkering of gene regulation facilitated super rapid adaptive radiation. Preprint at bioRxiv https://doi.org/10.1101/2024.01.24.577063 (2024).

  • Yamanaka, A. et al. Developmental process of the modern house shrew’s molars: implications for the evolution of the tribosphenic molar in Mesozoic mammals. Evolution https://doi.org/10.1093/evolut/qpad228 (2023).

  • Peoples, N., Burns, M. D., Mihalitsis, M. & Wainwright, P. C. Evolutionary lability of a key innovation spurs rapid diversification. Figshare https://doi.org/10.6084/m9.figshare.25661859 (2024).

  • Rabosky, D. L. No substitute for real data: a cautionary note on the use of phylogenies from birth–death polytomy resolvers for downstream comparative analyses. Evolution 69, 3207–3216 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Beaulieu, J. M., O’Meara, B. C. & Donoghue, M. J. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Syst. Biol. 62, 725–737 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Boyko, J. D. & Beaulieu, J. M. Generalized hidden Markov models for phylogenetic comparative datasets. Methods Ecol. Evol. 12, 468–478 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Fabreti, L. & Höhna, S. Convergence assessment for Bayesian phylogenetic analysis using MCMC simulation. Methods Ecol. Evol. 13, 77–90 (2022).

  • Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinf. 7, 88 (2006).

    Article 

    Google Scholar
     

  • Tribble, C. M. et al. RevGadgets: an R package for visualizing Bayesian phylogenetic analyses from RevBayes. Methods Ecol. Evol. 13, 314–323 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Rabosky, D. L. & Goldberg, E. E. FiSSE: a simple nonparametric test for the effects of a binary character on lineage diversification rates. Evolution 71, 1432–1442 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 
    MATH 

    Google Scholar
     

  • Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Louca, S. & Pennell, M. W. A general and efficient algorithm for the likelihood of diversification and discrete-trait evolutionary models. Syst. Biol. 69, 545–556 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Helmstetter, A. J. et al. Trait-dependent diversification in angiosperms: patterns, models, and data. Ecol. Lett. 26, 640–657 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zenil-Ferguson, R., McEntee, J. P., Burleigh, J. G. & Duckworth, R. A. Linking ecological specialization to its macroevolutionary consequences: an example with passerine nest type. Syst. Biol. 72, 294–306 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Froese, R. & Pauly, D. FishBase www.fishbase.org (2024).

  • Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments