Chu, B. et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006).
Yang, L. et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci. 102, 72–108 (2019).
Palneedi, H., Peddigari, M., Hwang, G.-T., Jeong, D.-Y. & Ryu, J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018).
Li, J. et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. https://doi.org/10.1038/s41563-020-0704-x (2020).
Cheema, S. S. et al. Giant energy storage and power density negative capacitance superlattices. Nature 629, 803–809 (2024).
Liu, Z. et al. Antiferroelectrics for energy storage applications: a review. Adv. Mater. Technol. https://doi.org/10.1002/admt.201800111 (2018).
Qi, H. et al. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv. Funct. Mater. 29, 1903877 (2019).
Si, Y. et al. Antiferroelectric oxide thin-films: fundamentals, properties, and applications. Prog. Mater. Sci. 142, 101231 (2024).
Pan, H. et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 374, 100–104 (2021).
Kim, J. et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 369, 81–84 (2020).
Han, S. et al. High energy density in artificial heterostructures through relaxation time modulation. Science 384, 312–317 (2024).
Yang, B. et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 21, 1074–1080 (2022).
Zhang, T. et al. Superior energy storage performance in antiferroelectric epitaxial thin films via structural heterogeneity and orientation control. Adv. Funct. Mater. 34, 2311160 (2024).
Li, D. et al. Ultrahigh energy density of antiferroelectric PbZrO3-based films at low electric field. Adv. Funct. Mater. 33, 2302995 (2023).
Shuai, W. et al. Superior and ultrafast energy storage performance of relaxor antiferroelectric HfO2-based supercapacitors. Energy Stor. Mater. 62, 102931 (2023).
Cheng, H. et al. Achieving a high energy storage density in Ag(Nb,Ta)O3 antiferroelectric films via nanograin engineering. J. Adv. Ceram. 12, 196–206 (2023).
Er, X., Chen, P., Chen, J. & Zhan, Q. Exploring the energy storage capacity of the Pb1−xLaxHfO3 system by composition engineering. J. Eur. Ceram. Soc. 43, 4008–4014 (2023).
Li, J., Li, F., Xu, Z. & Zhang, S. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 30, e1802155 (2018).
Li, Y. Z., Wang, Z. J., Bai, Y. & Zhang, Z. D. High energy storage performance in Ca-doped PbZrO3 antiferroelectric films. J. Eur. Ceram. Soc. 40, 1285–1292 (2020).
Acharya, M. et al. Exploring the Pb1−xSrxHfO3 system and potential for high capacitive energy storage density and efficiency. Adv. Mater. 34, 2105967 (2022).
Hao, X., Wang, Y., Zhang, L., Zhang, L. & An, S. Composition-dependent dielectric and energy-storage properties of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thick films. Appl. Phys. Lett. 102, 163903 (2013).
Li, F. et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349–354 (2018).
Zhang, M. et al. Ultrahigh energy storage in high-entropy ceramic capacitors with polymorphic relaxor phase. Science 384, 185–189 (2024).
Chen, L. et al. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat. Commun. 13, 3089 (2022).
Song, J., Iwamoto, Y., Iijima, T. & Okamura, S. Electrical properties of antiferroelectric Pb(Zr,Hf)O3 films fabricated by chemical solution deposition. Jpn. J. Appl. Phys. 61, SN1010 (2022).
Li, W. et al. Enhanced energy-storage density in (Pb0.98La0.02)(Zr0.45-xSn0.55Hfx)0.995O3 antiferroelectric ceramics. Scripta Mater. 242, 115959 (2024).
Jiang, R.-J. et al. Atomic insight into the successive antiferroelectric–ferroelectric phase transition in antiferroelectric oxides. Nano Lett. 23, 1522–1529 (2023).
Viehland, D. Transmission electron microscopy study of high-Zr-content lead zirconate titanate. Phys. Rev. B 52, 778–791 (1995).
Yu, Z. et al. Room-temperature stabilizing strongly competing ferrielectric and antiferroelectric phases in PbZrO3 by strain-mediated phase separation. Nat. Commun. 15, 3438 (2024).
Pan, H. et al. Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578–582 (2019).
Yang, J. et al. Field-induced strain engineering to optimize antiferroelectric ceramics in breakdown strength and energy storage performance. Acta Mater. 257, 119186 (2023).
Shen, B. Z. et al. Enhanced energy-storage performance of an all-inorganic flexible bilayer-like antiferroelectric thin film via using electric field engineering. Nanoscale 12, 8958–8968 (2020).
Ma, B. et al. PLZT film capacitors for power electronics and energy storage applications. J. Mater. Sci., Mater. Electron. 26, 9279–9287 (2015).
Gao, H. et al. Enhanced electrocaloric effect and energy-storage performance in PBLZT films with various Ba2+ content. Ceram. Int. 42, 16439–16447 (2016).
Zhang, T. et al. Tunable polarization-drived superior energy storage performance in PbZrO3 thin films. J. Adv. Ceram. 12, 930–942 (2023).
Zhang, Y. et al. High energy storage performance of PZO/PTO multilayers via interface engineering. ACS Appl. Mater. Interfaces 15, 7157–7164 (2023).
Viegas, A. E., Kuehnel, K., Mart, C., Czernohorsky, M. & Heitmann, J. Stabilizing antiferroelectric-like aluminum-doped hafnium oxide for energy storage capacitors. Adv. Eng. Mater. 25, 2300443 (2023).
Ali, F. et al. Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage. J. Appl. Phys. 122, 144105 (2017).
Payne, A. et al. Dielectric, energy storage, and loss study of antiferroelectric-like Al-doped HfO2 thin films. Appl. Phys. Lett. 117, 221104 (2020).
Yi, S.-H., Lin, Hs-C. & Chen, M.-J. Ultra-high energy storage density and scale-up of antiferroelectric TiO2/ZrO2/TiO2 stacks for supercapacitors. J. Mater. Chem. A 9, 9081–9091 (2021).
Park, M. H. et al. Thin HfxZr1-xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4, 1400610 (2014).
Lomenzo, P. D., Chung, C.-C., Zhou, C., Jones, J. L. & Nishida, T. Doped Hf0.5Zr0.5O2 for high efficiency integrated supercapacitors. Appl. Phys. Lett. 110, 232904 (2017).
Pešić, M., Hoffmann, M., Richter, C., Mikolajick, T. & Schroeder, U. Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2. Adv. Funct. Mater. 26, 7486–7494 (2016).
Shu, L. et al. Partitioning polar-slush strategy in relaxors leads to large energy-storage capability. Science 385, 204–209 (2024).
Yang, B. B. et al. Engineering relaxors by entropy for high energy storage performance. Nat. Energy 8, 956–964 (2023).
Pan, W., Zhang, Q., Bhalla, A. & Cross, L. E. Field-forced antiferroelectric-to-ferroelectric switching in modified lead zirconate titanate stannate ceramics. J. Am. Ceram. Soc. 72, 571–578 (1989).
Mohapatra, P., Johnson, D. D., Cui, J. & Tan, X. Effect of electric hysteresis on fatigue behavior in antiferroelectric bulk ceramics under bipolar loading. J. Mater. Chem. C 9, 15542–15551 (2021).
Shvartsman, V. V., Lupascu, D. C. & Green, D. J. Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95, 1–26 (2012).
Li, Q. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).
Chen, J. et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615, 62–66 (2023).
Anthony, S. M. & Granick, S. Image analysis with rapid and accurate two-dimensional Gaussian fitting. Langmuir 25, 8152–8160 (2009).
Haun, M. J. et al. Thermodynamic theory of PbZrO3. J. Appl. Phys. 65, 3173–3180 (1989).
Caretta, L. et al. Non-volatile electric-field control of inversion symmetry. Nat. Mater. 22, 207–215 (2023).
Hong, Z. et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett. 17, 2246–2252 (2017).
Haun, M. J. Thermodynamic Theory of the Lead-zirconate-titanate Solid Solution System. PhD thesis, Pennsylvania State Univ. (1988).
Bell, A. J. & Cross, L. E. A phenomenological gibbs function for BaTiO3 giving correct e field dependence of all ferroelectric phase changes. Ferroelectrics 59, 197–203 (1984).
Yang, B. Source data. Figshare https://doi.org/10.6084/m9.figshare.27643437.v1 (2024).