Thursday, January 30, 2025
No menu items!
HomeNatureEnhanced energy storage in antiferroelectrics via antipolar frustration

Enhanced energy storage in antiferroelectrics via antipolar frustration

  • Chu, B. et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci. 102, 72–108 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Palneedi, H., Peddigari, M., Hwang, G.-T., Jeong, D.-Y. & Ryu, J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018).

    Article 

    Google Scholar
     

  • Li, J. et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. https://doi.org/10.1038/s41563-020-0704-x (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheema, S. S. et al. Giant energy storage and power density negative capacitance superlattices. Nature 629, 803–809 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Antiferroelectrics for energy storage applications: a review. Adv. Mater. Technol. https://doi.org/10.1002/admt.201800111 (2018).

  • Qi, H. et al. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv. Funct. Mater. 29, 1903877 (2019).

    Article 

    Google Scholar
     

  • Si, Y. et al. Antiferroelectric oxide thin-films: fundamentals, properties, and applications. Prog. Mater. Sci. 142, 101231 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pan, H. et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 374, 100–104 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 369, 81–84 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, S. et al. High energy density in artificial heterostructures through relaxation time modulation. Science 384, 312–317 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, B. et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 21, 1074–1080 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, T. et al. Superior energy storage performance in antiferroelectric epitaxial thin films via structural heterogeneity and orientation control. Adv. Funct. Mater. 34, 2311160 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Li, D. et al. Ultrahigh energy density of antiferroelectric PbZrO3-based films at low electric field. Adv. Funct. Mater. 33, 2302995 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shuai, W. et al. Superior and ultrafast energy storage performance of relaxor antiferroelectric HfO2-based supercapacitors. Energy Stor. Mater. 62, 102931 (2023).


    Google Scholar
     

  • Cheng, H. et al. Achieving a high energy storage density in Ag(Nb,Ta)O3 antiferroelectric films via nanograin engineering. J. Adv. Ceram. 12, 196–206 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Er, X., Chen, P., Chen, J. & Zhan, Q. Exploring the energy storage capacity of the Pb1−xLaxHfO3 system by composition engineering. J. Eur. Ceram. Soc. 43, 4008–4014 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, J., Li, F., Xu, Z. & Zhang, S. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 30, e1802155 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y. Z., Wang, Z. J., Bai, Y. & Zhang, Z. D. High energy storage performance in Ca-doped PbZrO3 antiferroelectric films. J. Eur. Ceram. Soc. 40, 1285–1292 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Acharya, M. et al. Exploring the Pb1−xSrxHfO3 system and potential for high capacitive energy storage density and efficiency. Adv. Mater. 34, 2105967 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hao, X., Wang, Y., Zhang, L., Zhang, L. & An, S. Composition-dependent dielectric and energy-storage properties of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thick films. Appl. Phys. Lett. 102, 163903 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Li, F. et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349–354 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Ultrahigh energy storage in high-entropy ceramic capacitors with polymorphic relaxor phase. Science 384, 185–189 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat. Commun. 13, 3089 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, J., Iwamoto, Y., Iijima, T. & Okamura, S. Electrical properties of antiferroelectric Pb(Zr,Hf)O3 films fabricated by chemical solution deposition. Jpn. J. Appl. Phys. 61, SN1010 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. Enhanced energy-storage density in (Pb0.98La0.02)(Zr0.45-xSn0.55Hfx)0.995O3 antiferroelectric ceramics. Scripta Mater. 242, 115959 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, R.-J. et al. Atomic insight into the successive antiferroelectric–ferroelectric phase transition in antiferroelectric oxides. Nano Lett. 23, 1522–1529 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Viehland, D. Transmission electron microscopy study of high-Zr-content lead zirconate titanate. Phys. Rev. B 52, 778–791 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yu, Z. et al. Room-temperature stabilizing strongly competing ferrielectric and antiferroelectric phases in PbZrO3 by strain-mediated phase separation. Nat. Commun. 15, 3438 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, H. et al. Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578–582 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Field-induced strain engineering to optimize antiferroelectric ceramics in breakdown strength and energy storage performance. Acta Mater. 257, 119186 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shen, B. Z. et al. Enhanced energy-storage performance of an all-inorganic flexible bilayer-like antiferroelectric thin film via using electric field engineering. Nanoscale 12, 8958–8968 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, B. et al. PLZT film capacitors for power electronics and energy storage applications. J. Mater. Sci., Mater. Electron. 26, 9279–9287 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gao, H. et al. Enhanced electrocaloric effect and energy-storage performance in PBLZT films with various Ba2+ content. Ceram. Int. 42, 16439–16447 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Tunable polarization-drived superior energy storage performance in PbZrO3 thin films. J. Adv. Ceram. 12, 930–942 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. High energy storage performance of PZO/PTO multilayers via interface engineering. ACS Appl. Mater. Interfaces 15, 7157–7164 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viegas, A. E., Kuehnel, K., Mart, C., Czernohorsky, M. & Heitmann, J. Stabilizing antiferroelectric-like aluminum-doped hafnium oxide for energy storage capacitors. Adv. Eng. Mater. 25, 2300443 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ali, F. et al. Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage. J. Appl. Phys. 122, 144105 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Payne, A. et al. Dielectric, energy storage, and loss study of antiferroelectric-like Al-doped HfO2 thin films. Appl. Phys. Lett. 117, 221104 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yi, S.-H., Lin, Hs-C. & Chen, M.-J. Ultra-high energy storage density and scale-up of antiferroelectric TiO2/ZrO2/TiO2 stacks for supercapacitors. J. Mater. Chem. A 9, 9081–9091 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Park, M. H. et al. Thin HfxZr1-xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4, 1400610 (2014).

    Article 

    Google Scholar
     

  • Lomenzo, P. D., Chung, C.-C., Zhou, C., Jones, J. L. & Nishida, T. Doped Hf0.5Zr0.5O2 for high efficiency integrated supercapacitors. Appl. Phys. Lett. 110, 232904 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Pešić, M., Hoffmann, M., Richter, C., Mikolajick, T. & Schroeder, U. Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2. Adv. Funct. Mater. 26, 7486–7494 (2016).

    Article 

    Google Scholar
     

  • Shu, L. et al. Partitioning polar-slush strategy in relaxors leads to large energy-storage capability. Science 385, 204–209 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, B. B. et al. Engineering relaxors by entropy for high energy storage performance. Nat. Energy 8, 956–964 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pan, W., Zhang, Q., Bhalla, A. & Cross, L. E. Field-forced antiferroelectric-to-ferroelectric switching in modified lead zirconate titanate stannate ceramics. J. Am. Ceram. Soc. 72, 571–578 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Mohapatra, P., Johnson, D. D., Cui, J. & Tan, X. Effect of electric hysteresis on fatigue behavior in antiferroelectric bulk ceramics under bipolar loading. J. Mater. Chem. C 9, 15542–15551 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shvartsman, V. V., Lupascu, D. C. & Green, D. J. Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95, 1–26 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615, 62–66 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anthony, S. M. & Granick, S. Image analysis with rapid and accurate two-dimensional Gaussian fitting. Langmuir 25, 8152–8160 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haun, M. J. et al. Thermodynamic theory of PbZrO3. J. Appl. Phys. 65, 3173–3180 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Caretta, L. et al. Non-volatile electric-field control of inversion symmetry. Nat. Mater. 22, 207–215 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, Z. et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett. 17, 2246–2252 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Haun, M. J. Thermodynamic Theory of the Lead-zirconate-titanate Solid Solution System. PhD thesis, Pennsylvania State Univ. (1988).

  • Bell, A. J. & Cross, L. E. A phenomenological gibbs function for BaTiO3 giving correct e field dependence of all ferroelectric phase changes. Ferroelectrics 59, 197–203 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, B. Source data. Figshare https://doi.org/10.6084/m9.figshare.27643437.v1 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments