Friday, March 7, 2025
No menu items!
HomeNatureEmerging supersolidity in photonic-crystal polariton condensates

Emerging supersolidity in photonic-crystal polariton condensates

  • Gross, E. P. Unified theory of interacting bosons. Phys. Rev. 106, 161–162 (1957).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Zhur. Eksper. Teoret. Fiziki 29, 1107–1113 (1969).

    MATH 

    Google Scholar
     

  • Leggett, A. J. Can a solid be ‘superfluid’? Phys. Rev. Lett. 25, 1543–1546 (1970).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Kirzhnits, D. A. & Nepomnyashchii, Y. A. Coherent crystallization of quantum liquid. Zhur. Eksper. Teoret. Fiziki 32, 1191–1197 (1971).

    MATH 

    Google Scholar
     

  • Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Guo, Y. et al. An optical lattice with sound. Nature 599, 211–215 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tanzi, L. et al. Evidence of superfluidity in a dipolar supersolid from nonclassical rotational inertia. Science 371, 1162–1165 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    CAS 
    MATH 

    Google Scholar
     

  • Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).

    MATH 

    Google Scholar
     

  • Klaus, L. et al. Observation of vortices and vortex stripes in a dipolar condensate. Nat. Phys. 18, 1453–1458 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Guo, M. et al. The low-energy Goldstone mode in a trapped dipolar supersolid. Nature 574, 386–389 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, J.-R. et al. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature 543, 91–94 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Putra, A., Salces-Cárcoba, F., Yue, Y., Sugawa, S. & Spielman, I. B. Spatial coherence of spin-orbit-coupled Bose gases. Phys. Rev. Lett. 124, 053605 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, Y., Pitaevskii, L. P. & Stringari, S. Quantum tricriticality and phase transitions in spin-orbit coupled Bose-Einstein condensates. Phys. Rev. Lett. 108, 225301 (2012).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chomaz, L. et al. Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442–446 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Khamehchi, M. A., Zhang, Y., Hamner, C., Busch, T. & Engels, P. Measurement of collective excitations in a spin-orbit-coupled Bose-Einstein condensate. Phys. Rev. A 90, 063624 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ji, S.-C. et al. Softening of roton and phonon modes in a Bose-Einstein condensate with spin-orbit coupling. Phys. Rev. Lett. 114, 105301 (2015).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wouters, M. & Carusotto, I. Goldstone mode of optical parametric oscillators in planar semiconductor microcavities in the strong-coupling regime. Phys. Rev. A 76, 043807 (2007).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Saccani, S., Moroni, S. & Boninsegni, M. Excitation spectrum of a supersolid. Phys. Rev. Lett. 108, 175301 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Léonard, J., Morales, A., Zupancic, P., Donner, T. & Esslinger, T. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science 358, 1415–1418 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ardizzone, V. et al. Polariton Bose–Einstein condensate from a bound state in the continuum. Nature 605, 447–452 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Sanvitto, D. et al. All-optical control of the quantum flow of a polariton condensate. Nat. Photon. 5, 610–614 (2011).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Vaupel, M., Maître, A. & Fabre, C. Observation of pattern formation in optical parametric oscillators. Phys. Rev. Lett. 83, 5278–5281 (1999).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ardizzone, V. et al. Formation and control of Turing patterns in a coherent quantum fluid. Sci. Rep. 3, 3016 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Whittaker, C. E. et al. Polariton pattern formation and photon statistics of the associated emission. Phys. Rev. X 7, 031033 (2017).

    MATH 

    Google Scholar
     

  • Romanelli, M., Leyder, C., Karr, J. P., Giacobino, E. & Bramati, A. Four wave mixing oscillation in a semiconductor microcavity: generation of two correlated polariton populations. Phys. Rev. Lett. 98, 106401 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewandowski, P. et al. Polarization dependence of nonlinear wave mixing of spinor polaritons in semiconductor microcavities. Phys. Rev. B 94, 045308 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wu, J. et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett. 21, 3120–3126 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sawicki, K. et al. Polariton lasing and energy-degenerate parametric scattering in non-resonantly driven coupled planar microcavities. Nanophotonics 10, 2421–2429 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Lecomte, T. et al. Optical parametric oscillation in one-dimensional microcavities. Phys. Rev. B 87, 155302 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Chen, F. et al. Femtosecond dynamics of a polariton bosonic cascade at room temperature. Nano Lett. 22, 2023–2029 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ye, Z. et al. Ultrafast intermode parametric scattering dynamics in room-temperature polariton condensates. Phys. Rev. B 107, L060303 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xie, W. et al. Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate. Phys. Rev. Lett. 108, 166401 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gianfrate, A. et al. Reconfigurable quantum fluid molecules of bound states in the continuum. Nat. Phys. 20, 61–67 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Riminucci, F. et al. Polariton condensation in gap-confined states of photonic crystal waveguides. Phys. Rev. Lett. 131, 246901 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nigro, D. & Gerace, D. Theory of exciton-polariton condensation in gap-confined eigenmodes. Phys. Rev. B 108, 085305 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Carusotto, I. & Ciuti, C. Spontaneous microcavity-polariton coherence across the parametric threshold: quantum Monte Carlo studies. Phys. Rev. B 72, 125335 (2005).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Nigro, D. et al. Supersolidity of polariton condensates in photonic crystal waveguides. Phys. Rev. Lett. 134, 056002 (2025).

  • Grudinina, A. et al. Collective excitations of a bound-in-the-continuum condensate. Nat. Commun. 14, 3464 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Geier, K. T., Martone, G. I., Hauke, P., Ketterle, W. & Stringari, S. Dynamics of stripe patterns in supersolid spin-orbit-coupled Bose gases. Phys. Rev. Lett. 130, 156001 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Pomeau, Y. & Rica, S. Dynamics of a model of supersolid. Phys. Rev. Lett. 72, 2426–2429 (1994).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Casotti, E. et al. Observation of vortices in a dipolar supersolid. Nature 635, 327–331 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Böning, J., Filinov, A. & Bonitz, M. Crystallization of an exciton superfluid. Phys. Rev. B 84, 075130 (2011).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Matuszewski, M., Taylor, T. & Kavokin, A. V. Exciton supersolidity in hybrid Bose-Fermi systems. Phys. Rev. Lett. 108, 060401 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Riminucci, F. et al. Nanostructured GaAs/(Al, Ga)As waveguide for low-density polariton condensation from a bound state in the continuum. Phys. Rev. Appl. 18, 024039 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Langbein, W. Spontaneous parametric scattering of microcavity polaritons in momentum space. Phys. Rev. B 70, 205301 (2004).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Ciuti, C., Schwendimann, P. & Quattropani, A. Parametric luminescence of microcavity polaritons. Phys. Rev. B 63, 041303 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Dunnett, K., Ferrier, A., Zamora, A., Dagvadorj, G. & Szymańska, M. H. Properties of the signal mode in the polariton optical parametric oscillator regime. Phys. Rev. B 98, 165307 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Trypogeorgos, D. & Gianfrate, A. Emerging supersolidity in photonic crystal polariton condensates. Zenodo https://doi.org/10.5281/zenodo.14251103 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments