Landau, L. Theory of the superfluidity of helium ii. Phys. Rev. 60, 356â358 (1941).
Landau, L. On the theory of superfluidity of helium ii. J. Phys. 11, 91â92 (1947).
Feynman, R. P. & Cohen, M. Energy spectrum of the excitations in liquid helium. Phys. Rev. 102, 1189â1204 (1956).
Henshaw, D. G. & Woods, A. D. B. Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev. 121, 1266â1274 (1961).
Godfrin, H. et al. Observation of a roton collective mode in a two-dimensional Fermi liquid. Nature 483, 576â579 (2012).
Donnelly, R. Rotons: a low-temperature puzzle. Phys. World 10, 25â30 (1997).
Nozières, P. Is the roton in superfluid 4He the ghost of a Bragg spot? J. Low Temp. Phys. 137, 45â67 (2004).
Bobrov, V., Trigger, S. & Litinski, D. Universality of the phonon-roton spectrum in liquids and superfluidity of 4He. Z. Naturforsch. A 71, 565â575 (2016).
Girvin, S. M., MacDonald, A. H. & Platzman, P. M. Magneto-roton theory of collective excitations in the fractional quantum Hall effect. Phys. Rev. B 33, 2481â2494 (1986).
Kukushkin, I. V., Smet, J. H., Scarola, V. W., Umansky, V. & von Klitzing, K. Dispersion of the excitations of fractional quantum Hall states. Science 324, 1044â1047 (2009).
Mottl, R. et al. Roton-type mode softening in a quantum gas with cavity-mediated long-range interactions. Science 336, 1570â1573 (2012).
Chomaz, L. et al. Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442â446 (2018).
Mukherjee, B. et al. Crystallization of bosonic quantum Hall states in a rotating quantum gas. Nature 601, 58â62 (2022).
Apaja, V., Halinen, J., Halonen, V., Krotscheck, E. & Saarela, M. Charged-boson fluid in two and three dimensions. Phys. Rev. B 55, 12925â12945 (1997).
De Palo, S., Conti, S. & Moroni, S. Monte Carlo simulations of two-dimensional charged bosons. Phys. Rev. B 69, 035109 (2004).
Kalman, G. J., Hartmann, P., Golden, K. I., Filinov, A. & Donkó, Z. Correlational origin of the roton minimum. Europhys. Lett. 90, 55002 (2010).
Kalman, G. J., Kyrkos, S., Golden, K. I., Hartmann, P. & Donkó, Z. The roton minimum: is it a general feature of strongly correlated liquids? Contrib. Plasma Phys. 52, 219â223 (2012).
Dorheim, T., Moldabekov, Z., Vorberger, J., Kählert, H. & Bonitz, M. Electronic pair alignment and roton feature in the warm dense electron gas. Commun. Phys. 5, 304 (2022).
Lu, H., Chen, B.-B., Wu, H.-Q., Sun, K. & Meng, Z. Y. Thermodynamic response and neutral excitations in integer and fractional quantum anomalous Hall states emerging from correlated flat bands. Phys. Rev. Lett. 132, 236502 (2024).
Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002â1010 (1934).
Tanatar, B. & Ceperley, D. M. Ground state of the two-dimensional electron gas. Phys. Rev. B 39, 5005â5016 (1989).
De Palo, S., Rapisarda, F. & Senatore, G. Excitonic condensation in a symmetric electron-hole bilayer. Phys. Rev. Lett. 88, 206401 (2002).
Spivak, B. & Kivelson, S. A. Phase intermediate between a two-dimensional electron liquid and Wigner crystal. Phys. Rev. B 70, 155114 (2004).
Hartmann, P., Donkó, Z. & Kalman, G. J. Structure and phase diagram of strongly-coupled bipolar charged-particle bilayers. Europhys. Lett. 72, 396â402 (2005).
Lozovik, Y. E. & Yudson, V. I. A new mechanism for superconductivity: pairing between spatially separated electrons and holes. Sov. Phys. JETP 44, 738â753 (1976).
Balatsky, A. V., Joglekar, Y. N. & Littlewood, P. B. Dipolar superfluidity in electron-hole bilayer systems. Phys. Rev. Lett. 93, 266801 (2004).
Joglekar, Y. N., Balatsky, A, V. & Das Sarma, S. Wigner supersolid of excitons in electron-hole bilayers. Phys. Rev. B 74, 233302 (2006).
Glyde, H. R. & Griffin, A. Zero sound and atomiclike excitations: the nature of phonons and rotons in liquid 4He. Phys. Rev. Lett. 65, 1454â1457 (1990).
Filinov, A. & Bonitz, M. Collective and single-particle excitations in two-dimensional dipolar Bose gases. Phys. Rev. A 86, 063628 (2012).
De Dycker, E. & Phariseau, P. On the LCAO-method for disordered materials. I. General theory. Physica 34, 325â332 (1967).
De Dycker, E. & Phariseau, P. On the LCAO-method for disordered materials. II. Application to some simple models. Physica 35, 405â416 (1967).
Kim, J. et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723â726 (2015).
Ryu, S. H. et al. Pseudogap in a crystalline insulator doped by disordered metals. Nature 596, 68â73 (2021).
Kiraly, B. et al. Anisotropic two-dimensional screening at the surface of black phosphorus. Phys. Rev. Lett. 123, 216403 (2019).
Baumberger, F., Auwärter, W., Greber, T. & Osterwalder, J. Electron coherence in a melting lead monolayer. Science 306, 2221â2224 (2004).
Rotenberg, E., Theis, W., Horn, K. & Gille, P. Quasicrystalline valence bands in decagonal AlNiCo. Nature 406, 602â605 (2000).
Corbae, P. et al. Observation of spin-momentum locked surface states in amorphous Bi2Se3. Nat. Mater. 22, 200â206 (2023).
Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48â52 (2021).
Pudalov, V. M., Dâlorio, M., Kravchenko, S. V. & Campbell, J. W. Zero-magnetic-field collective insulator phase in a dilute 2D electron system. Phys. Rev. Lett. 70, 1866â1869 (1993).
Hanein, Y. et al. Observation of the metal-insulator transition in two-dimensional n-type GaAs. Phys. Rev. B 58, R13338âR13340 (1993).
Solovyev, V. V. & Kukushkin, I. V. Renormalized Landau quasiparticle dispersion revealed by photoluminescence spectra from a two-dimensional Fermi liquid at the MgZnO/ZnO heterointerface. Phys. Rev. B 96, 115131 (2017).
Chui, S. T. & Tanatar, B. Impurity effect on the two-dimensional-electron fluid-solid transition in zero field. Phys. Rev. Lett. 74, 458â461 (1995).
Fogler, M. M., Koulakov, A. A. & Shklovskii, B. I. Ground state of a two-dimensional electron liquid in a weak magnetic field. Phys. Rev. B 54, 1853â1871 (1996).
Reichhardt, C. J. O., Reichhardt, C. & Bishop, A. R. Structural transitions, melting, and intermediate phases for stripe- and clump-forming systems. Phys. Rev. E 82, 041502 (2010).
Pu, S., Balram, A. C., Taylor, J., Fradkin, E. & PapiÄ, Z. Microscopic model for fractional quantum Hall nematics. Phys. Rev. Lett. 132, 236503 (2024).
Chang, K. S., Sher, A., Petzinger, K. G. & Weisz, G. Density of states of liquid Cu. Phys. Rev. B 12, 5506â5513 (1975).
Anderson, P. W. & McMillan, W. L. in Multiple-Scattering Theory and Resonances in Transition Metals (ed. Marshall, W.) 50â86 (Academic, 1967).
Schwartz, L. & Ehrenreich, H. Single-site approximation in the electronic theory of liquid metals. Ann. Phys. 64, 100â148 (1971).
Morgan, G. J. Electron transport in liquid metals II. A model for the wave functions in liquid transition metals. J. Phys. C Solid State Phys. 2, 1454â1463 (1969).
Park, K. & Jain, J. K. Two-roton bound state in the fractional quantum Hall effect. Phys. Rev. Lett. 84, 5576â5579 (2000).
Jung, S. W. et al. Black phosphorus as a bipolar pseudospin semiconductor. Nat. Mater. 19, 277â281 (2020).
Golden, K. I., Kalman, G. J., Hartmann, P. & Donkó, Z. Dynamics of two-dimensional dipole systems. Phys. Rev. E 82, 036402 (2010).
Kutlu, E., Narin, P., Lisesivdin, S. B. & Ozbay, E. Electronic and optical properties of black phosphorus doped with Au, Sn and I atoms. Philos. Mag. 98, 155â164 (2018).
Fei, R. & Yang, L. Strain-engineering the anisotropic electrical conductance of few layer black phosphorus. Nano Lett. 14, 2884â2889 (2014).
Chui, S. T. & Tanatar, B. Phase diagram of the two-dimensional quantum electron freezing with external impurities. Phys. Rev. B 55, 9330â9932 (1997).
Tian, Z. et al. Isotropic charge screening of anisotropic black phosphorus revealed by potassium adatoms. Phys. Rev. B 100, 085440 (2019).
Shirley, E. L., Terminello, L. J., Santoni, A. & Himpsel, F. J. Brillouin-zone-selection effects in graphite photoelectron angular distributions. Phys. Rev. B 51, 13614â13622 (1995).
Moser, S. An experimentalistâs guide to the matrix element in angle resolved photoemission. J. Electron Spectros. Relat. Phenomena 214, 29â52 (2017).