Saturday, April 19, 2025
No menu items!
HomeNatureElectric-field-induced domain walls in wurtzite ferroelectrics

Electric-field-induced domain walls in wurtzite ferroelectrics

  • Kim, K. H., Karpov, I., Olsson, R. H. III & Jariwala, D. Wurtzite and fluorite ferroelectric materials for electronic memory. Nat. Nanotechnol. 18, 422–441 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, P. et al. Dawn of nitride ferroelectric semiconductors: from materials to devices. Semicond. Sci. Technol. 38, 043002 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mikolajick, T. et al. Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fichtner, S., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. AlScN: a III-V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hardy, M. T. et al. Epitaxial ScAlN grown by molecular beam epitaxy on GaN and SiC substrates. Appl. Phys. Lett. 110, 162104 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Calderon, S. et al. Atomic-scale polarization switching in wurtzite ferroelectrics. Science 380, 1034–1038 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, W. et al. Wake-up in Al1−xBxN ferroelectric films. Adv. Electron. Mater. 8, 2100931 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, D., Wang, P., Wang, B. Y. & Mi, Z. Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy. Appl. Phys. Lett. 119, 111902 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, D. et al. Ferroelectric YAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 123, 033504 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, B. et al. A high Q value ScAlN/AlN-based SAW resonator for load sensing. IEEE Trans. Electron Devices 68, 5192–5197 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, J. X. et al. Ferroelectric behavior of sputter deposited Al0.72Sc0.28N approaching 5 nm thickness. Appl. Phys. Lett. 122, 222901 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pradhan, D. K. et al. A scalable ferroelectric non-volatile memory operating at 600 °C. Nat. Electron. 7, 348–355 (2024).

  • Wang, D. et al. An epitaxial ferroelectric ScAlN/GaN heterostructure memory. Adv. Electron. Mater. 8, 2200005 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Islam, M. R. et al. On the exceptional temperature stability of ferroelectric Al1-xScxN thin films. Appl. Phys. Lett. 118, 232905 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guido, R. et al. Thermal stability of the ferroelectric properties in 100 nm-thick Al0.72Sc0.28N. ACS Appl. Mater. Interfaces 15, 7030–7043 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schönweger, G. et al. Ultrathin Al1−xScxN for low‐voltage‐driven ferroelectric‐based devices. Phys. Status Solidi RRL 17, 2200312 (2023).

    Article 

    Google Scholar
     

  • Wang, D. et al. Ultrathin nitride ferroic memory with large ON/OFF ratios for analog in-memory computing. Adv. Mater. 35, 2210628 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Reconfigurable compute-in-memory on field-programmable ferroelectric diodes. Nano Lett. 22, 7690–7698 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory. Nano Lett. 21, 3753–3761 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, K. H. et al. Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors. Nat. Nanotechnol. 18, 1044–1050 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen, Z. & Wu, D. Ferroelectric tunnel junctions: modulations on the potential barrier. Adv. Mater. 32, 1904123 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schönweger, G. et al. In-grain ferroelectric switching in sub-5 nm thin Al0.74Sc0.26N films at 1 V. Adv. Sci. 10, 2302296 (2023).

    Article 

    Google Scholar
     

  • Wolff, N. et al. Atomic scale confirmation of ferroelectric polarization inversion in wurtzite-type AlScN. J. Appl. Phys. 129, 034103 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schönweger, G. et al. From fully strained to relaxed: epitaxial ferroelectric Al1‐xScxN for III‐N technology. Adv. Funct. Mater. 32, 2109632 (2022).

    Article 

    Google Scholar
     

  • Yazawa, K. et al. Anomalously abrupt switching of wurtzite-structured ferroelectrics: simultaneous non-linear nucleation and growth model. Mater. Horiz. 10, 2936–2944 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, P., Moise, T. S., Colombo, L. & Seidel, J. Roadmap for ferroelectric domain wall nanoelectronics. Adv. Funct. Mater. 32, 2110263 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Meier, D. & Selbach, S. M. Ferroelectric domain walls for nanotechnology. Nat. Rev. Mater. 7, 157–173 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, W. et al. Nonvolatile ferroelectric-domain-wall memory embedded in a complex topological domain structure. Adv. Mater. 34, 2107711 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, P. et al. Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 118, 223504 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, P. et al. Quaternary alloy ScAlGaN: a promising strategy to improve the quality of ScAlN. Appl. Phys. Lett. 120, 012104 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, P. et al. Oxygen defect dominated photoluminescence emission of ScAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 118, 032102 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Ferroelectric dead layer driven by a polar interface. Phys. Rev. B 82, 094114 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Wurfel, P. & Batra, I. P. Depolarization-field-induced instability in thin ferroelectric films—experiment and theory. Phys. Rev. B 8, 5126–5133 (1973).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Romano, L. T., Northrup, J. E. & Okeefe, M. A. Inversion domains in GaN grown on sapphire. Appl. Phys. Lett. 69, 2394–2396 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Northrup, J. E., Neugebauer, J. & Romano, L. T. Inversion domain and stacking mismatch boundaries in GaN. Phys. Rev. Lett. 77, 103–106 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stutzmann, M. et al. Playing with polarity. Phys. Status Solidi B 228, 505–512 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, P. et al. Interfacial modulated lattice-polarity-controlled epitaxy of III-nitride heterostructures on Si(111). ACS Appl. Mater. Interfaces 14, 15747–15755 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, F. et al. Lattice polarity manipulation of quasi-vdW epitaxial GaN films on graphene through interface atomic configuration. Adv. Mater. 34, 2106814 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z., Wang, X., Ma, X., Yang, Y. & Wu, D. Doping effects on the ferroelectric properties of wurtzite nitrides. Appl. Phys. Lett. 122, 122901 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, S., Holec, D., Fu, W. Y., Humphreys, C. J. & Moram, M. A. Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides. J. Appl. Phys. 114, 133510 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Chung, J. Y. et al. Atomic-scale characterization of extended defects in wurtzite GaN heterostructures. ACS Appl. Nano Mater. 6, 14019–14028 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, H. et al. Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning. Nat. Commun. 6, 7266 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Calderon, S., Funni, S. D. & Dickey, E. C. Accuracy of local polarization measurements by scanning transmission electron microscopy. Microsc. Microanal. 28, 2047–2058 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar
     

  • van de Walle, A. et al. Efficient stochastic generation of special quasirandom structures. Calphad 42, 13–18 (2013).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments