Kim, K. H., Karpov, I., Olsson, R. H. III & Jariwala, D. Wurtzite and fluorite ferroelectric materials for electronic memory. Nat. Nanotechnol. 18, 422–441 (2023).
Wang, P. et al. Dawn of nitride ferroelectric semiconductors: from materials to devices. Semicond. Sci. Technol. 38, 043002 (2023).
Mikolajick, T. et al. Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021).
Fichtner, S., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. AlScN: a III-V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019).
Hardy, M. T. et al. Epitaxial ScAlN grown by molecular beam epitaxy on GaN and SiC substrates. Appl. Phys. Lett. 110, 162104 (2017).
Calderon, S. et al. Atomic-scale polarization switching in wurtzite ferroelectrics. Science 380, 1034–1038 (2023).
Zhu, W. et al. Wake-up in Al1−xBxN ferroelectric films. Adv. Electron. Mater. 8, 2100931 (2022).
Wang, D., Wang, P., Wang, B. Y. & Mi, Z. Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy. Appl. Phys. Lett. 119, 111902 (2021).
Wang, D. et al. Ferroelectric YAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 123, 033504 (2023).
Lin, B. et al. A high Q value ScAlN/AlN-based SAW resonator for load sensing. IEEE Trans. Electron Devices 68, 5192–5197 (2021).
Zheng, J. X. et al. Ferroelectric behavior of sputter deposited Al0.72Sc0.28N approaching 5 nm thickness. Appl. Phys. Lett. 122, 222901 (2023).
Pradhan, D. K. et al. A scalable ferroelectric non-volatile memory operating at 600 °C. Nat. Electron. 7, 348–355 (2024).
Wang, D. et al. An epitaxial ferroelectric ScAlN/GaN heterostructure memory. Adv. Electron. Mater. 8, 2200005 (2022).
Islam, M. R. et al. On the exceptional temperature stability of ferroelectric Al1-xScxN thin films. Appl. Phys. Lett. 118, 232905 (2021).
Guido, R. et al. Thermal stability of the ferroelectric properties in 100 nm-thick Al0.72Sc0.28N. ACS Appl. Mater. Interfaces 15, 7030–7043 (2023).
Schönweger, G. et al. Ultrathin Al1−xScxN for low‐voltage‐driven ferroelectric‐based devices. Phys. Status Solidi RRL 17, 2200312 (2023).
Wang, D. et al. Ultrathin nitride ferroic memory with large ON/OFF ratios for analog in-memory computing. Adv. Mater. 35, 2210628 (2023).
Liu, X. et al. Reconfigurable compute-in-memory on field-programmable ferroelectric diodes. Nano Lett. 22, 7690–7698 (2022).
Liu, X. et al. Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory. Nano Lett. 21, 3753–3761 (2021).
Kim, K. H. et al. Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors. Nat. Nanotechnol. 18, 1044–1050 (2023).
Wen, Z. & Wu, D. Ferroelectric tunnel junctions: modulations on the potential barrier. Adv. Mater. 32, 1904123 (2020).
Schönweger, G. et al. In-grain ferroelectric switching in sub-5 nm thin Al0.74Sc0.26N films at 1 V. Adv. Sci. 10, 2302296 (2023).
Wolff, N. et al. Atomic scale confirmation of ferroelectric polarization inversion in wurtzite-type AlScN. J. Appl. Phys. 129, 034103 (2021).
Schönweger, G. et al. From fully strained to relaxed: epitaxial ferroelectric Al1‐xScxN for III‐N technology. Adv. Funct. Mater. 32, 2109632 (2022).
Yazawa, K. et al. Anomalously abrupt switching of wurtzite-structured ferroelectrics: simultaneous non-linear nucleation and growth model. Mater. Horiz. 10, 2936–2944 (2023).
Sharma, P., Moise, T. S., Colombo, L. & Seidel, J. Roadmap for ferroelectric domain wall nanoelectronics. Adv. Funct. Mater. 32, 2110263 (2022).
Meier, D. & Selbach, S. M. Ferroelectric domain walls for nanotechnology. Nat. Rev. Mater. 7, 157–173 (2022).
Yang, W. et al. Nonvolatile ferroelectric-domain-wall memory embedded in a complex topological domain structure. Adv. Mater. 34, 2107711 (2022).
Wang, P. et al. Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 118, 223504 (2021).
Wang, P. et al. Quaternary alloy ScAlGaN: a promising strategy to improve the quality of ScAlN. Appl. Phys. Lett. 120, 012104 (2022).
Wang, P. et al. Oxygen defect dominated photoluminescence emission of ScAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 118, 032102 (2021).
Wang, Y. et al. Ferroelectric dead layer driven by a polar interface. Phys. Rev. B 82, 094114 (2010).
Wurfel, P. & Batra, I. P. Depolarization-field-induced instability in thin ferroelectric films—experiment and theory. Phys. Rev. B 8, 5126–5133 (1973).
Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).
Romano, L. T., Northrup, J. E. & Okeefe, M. A. Inversion domains in GaN grown on sapphire. Appl. Phys. Lett. 69, 2394–2396 (1996).
Northrup, J. E., Neugebauer, J. & Romano, L. T. Inversion domain and stacking mismatch boundaries in GaN. Phys. Rev. Lett. 77, 103–106 (1996).
Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017).
Stutzmann, M. et al. Playing with polarity. Phys. Status Solidi B 228, 505–512 (2001).
Wang, P. et al. Interfacial modulated lattice-polarity-controlled epitaxy of III-nitride heterostructures on Si(111). ACS Appl. Mater. Interfaces 14, 15747–15755 (2022).
Liu, F. et al. Lattice polarity manipulation of quasi-vdW epitaxial GaN films on graphene through interface atomic configuration. Adv. Mater. 34, 2106814 (2022).
Liu, Z., Wang, X., Ma, X., Yang, Y. & Wu, D. Doping effects on the ferroelectric properties of wurtzite nitrides. Appl. Phys. Lett. 122, 122901 (2023).
Zhang, S., Holec, D., Fu, W. Y., Humphreys, C. J. & Moram, M. A. Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides. J. Appl. Phys. 114, 133510 (2013).
Chung, J. Y. et al. Atomic-scale characterization of extended defects in wurtzite GaN heterostructures. ACS Appl. Nano Mater. 6, 14019–14028 (2023).
Yang, H. et al. Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning. Nat. Commun. 6, 7266 (2015).
Calderon, S., Funni, S. D. & Dickey, E. C. Accuracy of local polarization measurements by scanning transmission electron microscopy. Microsc. Microanal. 28, 2047–2058 (2022).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
van de Walle, A. et al. Efficient stochastic generation of special quasirandom structures. Calphad 42, 13–18 (2013).