Thursday, June 26, 2025
No menu items!
HomeNatureEfficient near-infrared harvesting in perovskite–organic tandem solar cells

Efficient near-infrared harvesting in perovskite–organic tandem solar cells

  • Brinkmann, K. O. et al. Perovskite–organic tandem solar cells. Nat. Rev. Mater. 9, 202–217 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brinkmann, K. O. et al. Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 604, 280–286 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7, 229–237 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, Y. et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng, L. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094–1098 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 30, 1800855 (2018).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nat. Energy 9, 592–601 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4, 1594–1606 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Highly efficient perovskite/organic tandem solar cells enabled by mixed-cation surface modulation. Adv. Mater. 35, 2305946 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ho-Baillie, A. W. Y. et al. Recent progress and future prospects of perovskite tandem solar cells. Appl. Phys. Rev. 8, 041307 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiang, X. et al. Isomeric diammonium passivation for perovskite–organic tandem solar cells. Nature 635, 860–866 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635, 867–873 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Jost, M. et al. Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Lett. 7, 1298–1307 (2022).

    Article 
    CAS 

    Google Scholar
     

  • He, Z. et al. Minimized optical/electrical energy loss for 25.1% monolithic perovskite/organic tandem solar cells. Nat. Commun. 16, 1773 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S., Liu, M. & Jen, A. K. Y. Prospects and challenges for perovskite–organic tandem solar cells. Joule 7, 484–502 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Leijtens, T. et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, J. et al. The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem. 6, 614–634 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cheng, P. & Yang, Y. Narrowing the band gap: the key to high-performance organic photovoltaics. Acc. Chem. Res. 53, 1218–1228 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, W. et al. Design of near-infrared nonfullerene acceptor with ultralow nonradiative voltage loss for high-performance semitransparent ternary organic solar cells. Angew. Chem. Int. Ed. 61, e202116111 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jia, Z. et al. High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nat. Commun. 12, 178 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Ultrafast energy transfer from polymer donors facilitating spectral uniform photocurrent generation and low energy loss in high-efficiency nonfullerene organic solar cells. Energy Environ. Sci. 16, 3373–3380 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sun, C. et al. Achieving fast charge separation and low nonradiative recombination loss by rational fluorination for high-efficiency polymer solar cells. Adv. Mater. 31, 1905480 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Recent progress in organic solar cells (Part I material science). Sci. China Chem. 65, 224–268 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yi, J. et al. Advantages, challenges and molecular design of different material types used in organic solar cells. Nat. Rev. Mater. 9, 46–62 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jia, Z. et al. Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells. Nat. Commun. 14, 1236 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, S. et al. Constructing monolithic perovskite/organic tandem solar cell with efficiency of 22.0% via reduced open-circuit voltage loss and broadened absorption spectra. Adv. Mater. 34, 2108829 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Alkyl-chain branching of non-fullerene acceptors flanking conjugated side groups toward highly efficient organic solar cells. Adv. Energy Mater. 11, 2102596 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kong, X. et al. 18.55% efficiency polymer solar cells based on a small molecule acceptor with alkylthienyl outer side chains and a low-cost polymer donor PTQ10. CCS Chem. 5, 841–850 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hai, J. et al. Achieving ultra-narrow bandgap non-halogenated non-fullerene acceptors via vinylene π-bridges for efficient organic solar cells. Mater. Adv. 2, 2132–2140 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Synthesis and photovoltaic properties of a series of narrow bandgap organic semiconductor acceptors with their absorption edge reaching 900 nm. Chem. Mater. 29, 10130–10138 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W. et al. Low-bandgap non-fullerene acceptors enabling high-performance organic solar cells. ACS Energy Lett. 6, 598–608 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shi, W. & Ma, H. Spectroscopic probes with changeable π-conjugated systems. Chem. Commun. 48, 8732–8744 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Bertrandie, J. et al. The energy level conundrum of organic semiconductors in solar cells. Adv. Mater. 34, 2202575 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, L. et al. Achieving 20.8% organic solar cells via additive-assisted layer-by-layer fabrication with bulk pin structure and improved optical management. Joule 8, 3153–3168 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Li, S. et al. Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets. J. Am. Chem. Soc. 141, 3073–3082 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Assessing the energy offset at the electron donor/acceptor interface in organic solar cells through radiative efficiency measurements. Energy Environ. Sci. 12, 3556–3566 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Tuning the hybridization of local exciton and charge-transfer states in highly efficient organic photovoltaic cells. Angew. Chem. Int. Ed. 59, 9004–9010 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Classen, A. et al. The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets. Nat. Energy 5, 711–719 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yi, Z. et al. Achieving a high open-circuit voltage of 1.339 V in 1.77 eV wide-bandgap perovskite solar cells via self-assembled monolayers. Energy Environ. Sci. 17, 202–209 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photon. 18, 1269–1275 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Siekmann, J. et al. Characterizing the influence of charge extraction layers on the performance of triple-cation perovskite solar cells. Adv. Energy Mater. 13, 2300448 (2023).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments