Peltier, W. R. Postglacial variations in the level of the sea: implications for climate dynamics and solid-Earth geophysics. Rev. Geophys. 36, 603–689 (1998).
Bürgmann, R., Chanard, K. & Fu, Y. in GNSS Monitoring of the Terrestrial Environment (eds Aoki, Y. & Kreemer, C.) Ch. 14 (Elsevier, 2024).
Huybers, P. & Langmuir, C. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planet. Sci. Lett. 286, 479–491 (2009).
Hu, Y. & Freymueller, J. T. Geodetic observations of time-variable glacial isostatic adjustment in southeast Alaska and its implications for Earth rheology. J. Geophys. Res. Solid Earth 124, 9870–9889 (2019).
Wu, P. & Johnston, P. Can deglaciation trigger earthquakes in N. America? Geophys. Res. Lett. 27, 1323–1326 (2000).
Maclennan, J., Jull, M., McKenzie, D., Slater, L. & Grönvold, K. The link between volcanism and deglaciation in Iceland. Geochem. Geophys. Geosyst. 3, 1–25 (2002).
Tolstoy, M. Mid-ocean ridge eruptions as a climate valve. Geophys. Res. Lett. 42, 1346–1351 (2015).
Crowley, J. W., Katz, R. F., Huybers, P., Langmuir, C. H. & Park, S.-H. Glacial cycles drive variations in the production of oceanic crust. Science 347, 1237–1240 (2015).
Milne, G. A. et al. Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291, 2381–2385 (2001).
Klemann, V., Martinec, Z. & Ivins, E. R. Glacial isostasy and plate motion. J. Geodyn. 46, 95–103 (2008).
Kierulf, H. P. et al. A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models. J. Geophys. Res. Solid Earth 119, 6613–6629 (2014).
Vardić, K., Clarke, P. J. & Whitehouse, P. L. A GNSS velocity field for crustal deformation studies: the influence of glacial isostatic adjustment on plate motion models. Geophys. J. Int. 231, 426–458 (2022).
Mitrovica, J. X., Davis, J. L. & Shapiro, I. I. A spectral formalism for computing three-dimensional deformations due to surface loads: 2. Present-day glacial isostatic adjustment. J. Geophys. Res. Solid Earth 99, 7075–7101 (1994).
Sella, G. F. et al. Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys. Res. Lett. 34, L02306 (2007).
Hermans, T. H. J., van der Wal, W. & Broerse, T. Reversal of the direction of horizontal velocities induced by GIA as a function of mantle viscosity. Geophys. Res. Lett. 45, 9597–9604 (2018).
Latychev, K., Mitrovica, J. X., Tamisiea, M. E., Tromp, J. & Moucha, R. Influence of lithospheric thickness variations on 3-D crustal velocities due to glacial isostatic adjustment. Geophys. Res. Lett. 32, L01304 (2005).
Whitehouse, P., Latychev, K., Milne, G. A., Mitrovica, J. X. & Kendall, R. Impact of 3-D Earth structure on Fennoscandian glacial isostatic adjustment: implications for space-geodetic estimates of present-day crustal deformations. Geophys. Res. Lett. 33, L13502 (2006).
Yuan, T., Zhong, S. & A, G. CitcomSVE-3.0: a three-dimensional finite-element software package for modeling load-induced deformation and glacial isostatic adjustment for an Earth with a viscoelastic and compressible mantle. Geosci. Model Dev. 18, 1445–1461 (2025).
Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model: global glacial isostatic adjustment. J. Geophys. Res. Solid Earth 120, 450–487 (2015).
Peltier, W. R., Argus, D. F. & Drummond, R. Comment on “An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J. Geophys. Res. Solid Earth 123, 2019–2028 (2018).
Lambeck, K. Glacial rebound of the British Isles-–II. A high-resolution, high-precision model. Geophys. J. Int. 115, 960–990 (1993).
Lambeck, K., Smither, C. & Johnston, P. Sea-level change, glacial rebound and mantle viscosity for Northern Europe. Geophys. J. Int. 134, 102–144 (1998).
Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).
Lambeck, K., Purcell, A. & Zhao, S. The North American Late Wisconsin ice sheet and mantle viscosity from glacial rebound analyses. Quat. Sci. Rev. 158, 172–210 (2017).
Becker, T. W. Superweak asthenosphere in light of upper mantle seismic anisotropy. Geochem. Geophys. Geosyst. 18, 1986–2003 (2017).
Mao, W. & Zhong, S. Constraints on mantle viscosity from intermediate-wavelength geoid anomalies in mantle convection models with plate motion history. J. Geophys. Res. Solid Earth 126, e2020JB021561 (2021).
Austermann, J., Chen, C. Y., Lau, H. C. P., Maloof, A. C. & Latychev, K. Constraints on mantle viscosity and Laurentide ice sheet evolution from pluvial paleolake shorelines in the western United States. Earth Planet. Sci. Lett. 532, 116006 (2020).
Cathles, L. et al. Influence of the asthenosphere on Earth dynamics and evolution. Sci. Rep. 13, 13367 (2023).
Zhong, S. & Davies, G. F. Effects of plate and slab viscosities on the geoid. Earth Planet. Sci. Lett. 170, 487–496 (1999).
Snow, J. & Edmonds, H. Ultraslow-spreading ridges: rapid paradigm changes. Oceanography 20, 90–101 (2007).
Sigmundsson, F. et al. Geodynamics of Iceland and the signatures of plate spreading. J. Volcanol. Geotherm. Res. 391, 106436 (2020).
Rowley, D. B. Rate of plate creation and destruction: 180 Ma to present. GSA Bull. 114, 927–933 (2002).
Weiss, T. L., Linsley, B. K., Gordon, A. L., Rosenthal, Y. & Dannenmann‐Di Palma, S. Constraints on Marine Isotope Stage 3 and 5 sea level from the flooding history of the Karimata Strait in Indonesia. Paleoceanogr. Paleoclimatol. 37, e2021PA004361 (2022).
Whitehouse, P. L., Gomez, N., King, M. A. & Wiens, D. A. Solid Earth change and the evolution of the Antarctic ice sheet. Nat. Commun. 10, 503 (2019).
Lund, D. C. & Asimow, P. D. Does sea level influence mid-ocean ridge magmatism on Milankovitch timescales? Geochem. Geophys. Geosyst. 12, Q12009 (2011).
Li, M. et al. Quantifying melt production and degassing rate at mid‐ocean ridges from global mantle convection models with plate motion history. Geochem. Geophys. Geosyst. 17, 2884–2904 (2016).
Thorson, R. M. Glacial tectonics: a deeper perspective. Quat. Sci. Rev. 19, 1391–1398 (2000).
Jull, M. & McKenzie, D. The effect of deglaciation on mantle melting beneath Iceland. J. Geophys. Res. Solid Earth 101, 21815–21828 (1996).
Norðdahl, H., Ingólfsson, Ó., Pétursson, H. G. & Hallsdóttir, M. Late Weichselian and Holocene environmental history of Iceland. Jökull 58, 343–364 (2008).
Gudmundsson, A. Mechanical aspects of postglacial volcanism and tectonics of the Reykjanes Peninsula, southwest Iceland. J. Geophys. Res. Solid Earth 91, 12711–12721 (1986).
Cooper, C. L. et al. Is there a climatic control on Icelandic volcanism? Quat. Sci. Adv. 1, 100004 (2020).
Middleton, J. L., Langmuir, C. H., Mukhopadhyay, S., McManus, J. F. & Mitrovica, J. X. Hydrothermal iron flux variability following rapid sea level changes. Geophys. Res. Lett. 43, 3848–3856 (2016).
A, G., Wahr, J. & Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada. Geophys. J. Int. 192, 557–572 (2013).
Zhong, S., Kang, K., A, G. & Qin, C. CitcomSVE: a three‐dimensional finite element software package for modeling planetary mantle’s viscoelastic deformation in response to surface and tidal loads. Geochem. Geophys. Geosyst. 23, e2022GC010359 (2022).
Watts, A. B. Isostasy and Flexure of the Lithosphere (Cambridge Univ. Press, 2001).
Zhong, S., Paulson, A. & Wahr, J. Three-dimensional finite-element modelling of Earth’s viscoelastic deformation: effects of lateral variations in lithospheric thickness. Geophys. J. Int. 155, 679–695 (2003).
Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270 (2012).
Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).
Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1.0 – a 1-degree global model of Earth’s crust. Geophys. Res. Abstr. 15, EGU2013-2658 (2013).
Le Voyer, M. et al. Carbon fluxes and primary magma CO2 contents along the global mid‐ocean ridge system. Geochem. Geophys. Geosyst. 20, 1387–1424 (2019).
Trenberth, K. E. & Smith, L. The mass of the atmosphere: a constraint on global analyses. J. Clim. 18, 864–875 (2005).
Kreemer, C., Hammond, W. C. & Blewitt, G. A robust estimation of the 3‐D intraplate deformation of the North American Plate from GPS. J. Geophys. Res. Solid Earth 123, 4388–4412 (2018).
Argus, D. F., Peltier, W. R., Blewitt, G. & Kreemer, C. The viscosity of the top third of the lower mantle estimated using GPS, GRACE, and relative sea level measurements of glacial isostatic adjustment. J. Geophys. Res. Solid Earth 126, e2020JB021537 (2021).
Peltier, W. R. & Drummond, R. Rheological stratification of the lithosphere: a direct inference based upon the geodetically observed pattern of the glacial isostatic adjustment of the North American continent. Geophys. Res. Lett. 35, L16314 (2008).
Yuan, T. & Zhong, S. Effects of glacial forcing on lithospheric motion and ridge spreading. Zenodo https://doi.org/10.5281/zenodo.14834933 (2025).