Thursday, April 24, 2025
No menu items!
HomeNatureEffects of glacial forcing on lithospheric motion and ridge spreading

Effects of glacial forcing on lithospheric motion and ridge spreading

  • Peltier, W. R. Postglacial variations in the level of the sea: implications for climate dynamics and solid-Earth geophysics. Rev. Geophys. 36, 603–689 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Bürgmann, R., Chanard, K. & Fu, Y. in GNSS Monitoring of the Terrestrial Environment (eds Aoki, Y. & Kreemer, C.) Ch. 14 (Elsevier, 2024).

  • Huybers, P. & Langmuir, C. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planet. Sci. Lett. 286, 479–491 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hu, Y. & Freymueller, J. T. Geodetic observations of time-variable glacial isostatic adjustment in southeast Alaska and its implications for Earth rheology. J. Geophys. Res. Solid Earth 124, 9870–9889 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wu, P. & Johnston, P. Can deglaciation trigger earthquakes in N. America? Geophys. Res. Lett. 27, 1323–1326 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Maclennan, J., Jull, M., McKenzie, D., Slater, L. & Grönvold, K. The link between volcanism and deglaciation in Iceland. Geochem. Geophys. Geosyst. 3, 1–25 (2002).

    Article 

    Google Scholar
     

  • Tolstoy, M. Mid-ocean ridge eruptions as a climate valve. Geophys. Res. Lett. 42, 1346–1351 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Crowley, J. W., Katz, R. F., Huybers, P., Langmuir, C. H. & Park, S.-H. Glacial cycles drive variations in the production of oceanic crust. Science 347, 1237–1240 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Milne, G. A. et al. Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291, 2381–2385 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Klemann, V., Martinec, Z. & Ivins, E. R. Glacial isostasy and plate motion. J. Geodyn. 46, 95–103 (2008).

    Article 

    Google Scholar
     

  • Kierulf, H. P. et al. A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models. J. Geophys. Res. Solid Earth 119, 6613–6629 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Vardić, K., Clarke, P. J. & Whitehouse, P. L. A GNSS velocity field for crustal deformation studies: the influence of glacial isostatic adjustment on plate motion models. Geophys. J. Int. 231, 426–458 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Mitrovica, J. X., Davis, J. L. & Shapiro, I. I. A spectral formalism for computing three-dimensional deformations due to surface loads: 2. Present-day glacial isostatic adjustment. J. Geophys. Res. Solid Earth 99, 7075–7101 (1994).

    Article 

    Google Scholar
     

  • Sella, G. F. et al. Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys. Res. Lett. 34, L02306 (2007).

  • Hermans, T. H. J., van der Wal, W. & Broerse, T. Reversal of the direction of horizontal velocities induced by GIA as a function of mantle viscosity. Geophys. Res. Lett. 45, 9597–9604 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Latychev, K., Mitrovica, J. X., Tamisiea, M. E., Tromp, J. & Moucha, R. Influence of lithospheric thickness variations on 3-D crustal velocities due to glacial isostatic adjustment. Geophys. Res. Lett. 32, L01304 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Whitehouse, P., Latychev, K., Milne, G. A., Mitrovica, J. X. & Kendall, R. Impact of 3-D Earth structure on Fennoscandian glacial isostatic adjustment: implications for space-geodetic estimates of present-day crustal deformations. Geophys. Res. Lett. 33, L13502 (2006).

  • Yuan, T., Zhong, S. & A, G. CitcomSVE-3.0: a three-dimensional finite-element software package for modeling load-induced deformation and glacial isostatic adjustment for an Earth with a viscoelastic and compressible mantle. Geosci. Model Dev. 18, 1445–1461 (2025).

  • Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model: global glacial isostatic adjustment. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Peltier, W. R., Argus, D. F. & Drummond, R. Comment on “An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J. Geophys. Res. Solid Earth 123, 2019–2028 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lambeck, K. Glacial rebound of the British Isles-–II. A high-resolution, high-precision model. Geophys. J. Int. 115, 960–990 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Lambeck, K., Smither, C. & Johnston, P. Sea-level change, glacial rebound and mantle viscosity for Northern Europe. Geophys. J. Int. 134, 102–144 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lambeck, K., Purcell, A. & Zhao, S. The North American Late Wisconsin ice sheet and mantle viscosity from glacial rebound analyses. Quat. Sci. Rev. 158, 172–210 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Becker, T. W. Superweak asthenosphere in light of upper mantle seismic anisotropy. Geochem. Geophys. Geosyst. 18, 1986–2003 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Mao, W. & Zhong, S. Constraints on mantle viscosity from intermediate-wavelength geoid anomalies in mantle convection models with plate motion history. J. Geophys. Res. Solid Earth 126, e2020JB021561 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Austermann, J., Chen, C. Y., Lau, H. C. P., Maloof, A. C. & Latychev, K. Constraints on mantle viscosity and Laurentide ice sheet evolution from pluvial paleolake shorelines in the western United States. Earth Planet. Sci. Lett. 532, 116006 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cathles, L. et al. Influence of the asthenosphere on Earth dynamics and evolution. Sci. Rep. 13, 13367 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, S. & Davies, G. F. Effects of plate and slab viscosities on the geoid. Earth Planet. Sci. Lett. 170, 487–496 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Snow, J. & Edmonds, H. Ultraslow-spreading ridges: rapid paradigm changes. Oceanography 20, 90–101 (2007).

    Article 

    Google Scholar
     

  • Sigmundsson, F. et al. Geodynamics of Iceland and the signatures of plate spreading. J. Volcanol. Geotherm. Res. 391, 106436 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rowley, D. B. Rate of plate creation and destruction: 180 Ma to present. GSA Bull. 114, 927–933 (2002).

    Article 

    Google Scholar
     

  • Weiss, T. L., Linsley, B. K., Gordon, A. L., Rosenthal, Y. & Dannenmann‐Di Palma, S. Constraints on Marine Isotope Stage 3 and 5 sea level from the flooding history of the Karimata Strait in Indonesia. Paleoceanogr. Paleoclimatol. 37, e2021PA004361 (2022).

    Article 

    Google Scholar
     

  • Whitehouse, P. L., Gomez, N., King, M. A. & Wiens, D. A. Solid Earth change and the evolution of the Antarctic ice sheet. Nat. Commun. 10, 503 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lund, D. C. & Asimow, P. D. Does sea level influence mid-ocean ridge magmatism on Milankovitch timescales? Geochem. Geophys. Geosyst. 12, Q12009 (2011).

  • Li, M. et al. Quantifying melt production and degassing rate at mid‐ocean ridges from global mantle convection models with plate motion history. Geochem. Geophys. Geosyst. 17, 2884–2904 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thorson, R. M. Glacial tectonics: a deeper perspective. Quat. Sci. Rev. 19, 1391–1398 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Jull, M. & McKenzie, D. The effect of deglaciation on mantle melting beneath Iceland. J. Geophys. Res. Solid Earth 101, 21815–21828 (1996).

    Article 

    Google Scholar
     

  • Norðdahl, H., Ingólfsson, Ó., Pétursson, H. G. & Hallsdóttir, M. Late Weichselian and Holocene environmental history of Iceland. Jökull 58, 343–364 (2008).

    Article 

    Google Scholar
     

  • Gudmundsson, A. Mechanical aspects of postglacial volcanism and tectonics of the Reykjanes Peninsula, southwest Iceland. J. Geophys. Res. Solid Earth 91, 12711–12721 (1986).

    Article 

    Google Scholar
     

  • Cooper, C. L. et al. Is there a climatic control on Icelandic volcanism? Quat. Sci. Adv. 1, 100004 (2020).

    Article 

    Google Scholar
     

  • Middleton, J. L., Langmuir, C. H., Mukhopadhyay, S., McManus, J. F. & Mitrovica, J. X. Hydrothermal iron flux variability following rapid sea level changes. Geophys. Res. Lett. 43, 3848–3856 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • A, G., Wahr, J. & Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada. Geophys. J. Int. 192, 557–572 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, S., Kang, K., A, G. & Qin, C. CitcomSVE: a three‐dimensional finite element software package for modeling planetary mantle’s viscoelastic deformation in response to surface and tidal loads. Geochem. Geophys. Geosyst. 23, e2022GC010359 (2022).

  • Watts, A. B. Isostasy and Flexure of the Lithosphere (Cambridge Univ. Press, 2001).

  • Zhong, S., Paulson, A. & Wahr, J. Three-dimensional finite-element modelling of Earth’s viscoelastic deformation: effects of lateral variations in lithospheric thickness. Geophys. J. Int. 155, 679–695 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1.0 – a 1-degree global model of Earth’s crust. Geophys. Res. Abstr. 15, EGU2013-2658 (2013).

  • Le Voyer, M. et al. Carbon fluxes and primary magma CO2 contents along the global mid‐ocean ridge system. Geochem. Geophys. Geosyst. 20, 1387–1424 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Trenberth, K. E. & Smith, L. The mass of the atmosphere: a constraint on global analyses. J. Clim. 18, 864–875 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Kreemer, C., Hammond, W. C. & Blewitt, G. A robust estimation of the 3‐D intraplate deformation of the North American Plate from GPS. J. Geophys. Res. Solid Earth 123, 4388–4412 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Argus, D. F., Peltier, W. R., Blewitt, G. & Kreemer, C. The viscosity of the top third of the lower mantle estimated using GPS, GRACE, and relative sea level measurements of glacial isostatic adjustment. J. Geophys. Res. Solid Earth 126, e2020JB021537 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Peltier, W. R. & Drummond, R. Rheological stratification of the lithosphere: a direct inference based upon the geodetically observed pattern of the glacial isostatic adjustment of the North American continent. Geophys. Res. Lett. 35, L16314 (2008).

  • Yuan, T. & Zhong, S. Effects of glacial forcing on lithospheric motion and ridge spreading. Zenodo https://doi.org/10.5281/zenodo.14834933 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments